
GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Deferred Rendering in Killzone 2

Michal Valient
Senior Programmer, Guerrilla

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Talk Outline

‣ Forward & Deferred Rendering Overview
‣ G-Buffer Layout
‣ Shader Creation
‣ Deferred Rendering in Detail

‣ Rendering Passes
‣ Light and Shadows
‣ Post-Processing

‣ SPU Usage / Architecture

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Forward & Deferred Rendering Overview

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Forward Rendering – Single Pass

‣ For each object
‣ Find all lights affecting object
‣ Render all lighting and material in a single shader

‣ Shader combinations explosion
‣ Shader for each material vs. light setup combination

‣ All shadow maps have to be in memory
‣ Wasted shader cycles

‣ Invisible surfaces / overdraw
‣ Triangles outside light influence

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Forward Rendering – Multi-Pass

‣ For each light
‣ For each object
‣ Add lighting from single light to frame buffer

‣ Shader for each material and light type
‣ Wasted shader cycles

‣ Invisible surfaces / overdraw
‣ Triangles outside light influence
‣ Lots of repeated work

‣ Full vertex shaders, texture filtering

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Deferred Rendering

‣ For each object
‣ Render surface properties into the G-Buffer

‣ For each light and lit pixel
‣ Use G-Buffer to compute lighting
‣ Add result to frame buffer

‣ Simpler shaders
‣ Scales well with number of lit pixels
‣ Does not handle transparent objects

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

G-Buffer Layout

Target Image

Depth

View-space normal

Specular intensity

Specular roughness / Power

Screen-space 2D motion vector

Albedo (texture colour)

Deferred composition

Image with post-processing (depth of field, bloom, motion blur, colorize, ILR)

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

G-Buffer : Our approach

R8 G8 B8 A8
Depth 24bpp Stencil

Lighting Accumulation RGB Intensity

Normal X (FP16) Normal Y (FP16)

Motion Vectors XY Spec-Power Spec-Intensity

Diffuse Albedo RGB Sun-Occlusion

DS

RT0

RT1

RT2

RT3

‣ MRT - 4xRGBA8 + 24D8S (approx 36 MB)

‣ 720p with Quincunx MSAA

‣ Position computed from depth buffer and pixel coordinates

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

‣ Lighting accumulation – output buffer

‣ Intensity – luminance of Lighting accumulation

‣ Scaled to range [0…2]

‣ Normal.z = sqrt(1.0f - Normal.x2 - Normal.y2)

G-Buffer : Our approach

R8 G8 B8 A8
Depth 24bpp Stencil

Lighting Accumulation RGB Intensity

Normal X (FP16) Normal Y (FP16)

Motion Vectors XY Spec-Power Spec-Intensity

Diffuse Albedo RGB Sun-Occlusion

DS

RT0

RT1

RT2

RT3

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

‣ Motion vectors – screen space
‣ Specular power - stored as log2(original)/10.5

‣ High range and still high precision for low shininess

‣ Sun Occlusion - pre-rendered static sun shadows
‣ Mixed with real-time sun shadow for higher quality

G-Buffer : Our approach

R8 G8 B8 A8
Depth 24bpp Stencil

Lighting Accumulation RGB Intensity

Normal X (FP16) Normal Y (FP16)

Motion Vectors XY Spec-Power Spec-Intensity

Diffuse Albedo RGB Sun-Occlusion

DS

RT0

RT1

RT2

RT3

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

G-Buffer Analysis

‣ Pros:
‣ Highly packed data structure
‣ Many extra attributes
‣ Allows MSAA with hardware support

‣ Cons:
‣ Limited output precision and dynamic range

‣ Lighting accumulation in gamma space
‣ Can use different color space (LogLuv)

‣ Attribute packing and unpacking overhead

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Deferred Rendering Passes

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Geometry Pass

‣ Fill the G-Buffer with all geometry (static, skinned, etc.)
‣ Write depth, motion, specular, etc. properties

‣ Initialize light accumulation buffer with pre-baked light
‣ Ambient, Incandescence, Constant specular
‣ Lightmaps on static geometry

‣ YUV color space, S3TC5 with Y in Alpha
‣ Sun occlusion in B channel
‣ Dynamic range [0..2]

‣ Image based lighting on dynamic geometry

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Image Based Lighting

‣ Artist placed light probes
‣ Arbitrary location and density
‣ Sampled and stored as 2nd order spherical harmonics

‣ Updated per frame for each object
‣ Blend four closest SHs based on distance
‣ Rotate into view space
‣ Encode into 8x8 envmap IBL texture
‣ Dynamic range [0..2]
‣ Generated on SPUs in parallel to other rendering tasks

Scene lighting

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Decals and Weapon Passes

‣ Primitives updating subset of the G-Buffer
‣ Bullet holes, posters, cracks, stains
‣ Reuse lighting of underlying surface
‣ Blend with albedo buffer
‣ Use G-Buffer Intensity channel to fix accumulation
‣ Same principle as particles with motion blur

‣ Separate weapon pass with different projection
‣ Different near plane
‣ Rendered into first 5% of depth buffer range
‣ Still reacts to lights and post-processing

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Light Accumulation Pass

‣ Light is rendered as convex geometry
‣ Point light – sphere
‣ Spot light – cone
‣ Sun – full-screen quad

‣ For each light…
‣ Find and mark visible lit pixels
‣ If light contributes to screen

‣ Render shadow map
‣ Shade lit pixels and add to framebuffer

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Determine Lit Pixels

‣ Marks pixels in front of the far light boundary
‣ Render back-faces of light volume
‣ Depth test GREATER-EQUAL
‣ Write to stencil on depth pass
‣ Skipped for very small distant lights

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Determine Lit Pixels

‣ Find amount of lit pixels inside the volume
‣ Start pixel query
‣ Render front faces of light volume
‣ Depth test LESS-EQUAL
‣ Don’t write anything – only EQUAL stencil test

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Render Shadow Map

‣ Enable conditional rendering
‣ Based on query results from previous stage
‣ GPU skips rendering for invisible lights

‣ Max 1024x1024xD16 shadow map
‣ Fast and with hardware filtering support
‣ Single map reused for all lights

‣ Skip small objects
‣ Small in shadow map and on screen
‣ Artist defined thresholds for lights and objects

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Shade Lit Pixels

‣ Render front-faces of light volume
‣ Depth test - LESS-EQUAL
‣ Stencil test - EQUAL
‣ Runs only on marked pixels inside light

‣ Compute light equation
‣ Read and unpack G-Buffer attributes
‣ Calculate Light vector, Color, Distance Attenuation
‣ Perform shadow map filtering

‣ Add Phong lighting to frame buffer

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Light Optimization

‣ Determine light size on the screen
‣ Approximation - angular size of light volume

‣ If light is “very small”
‣ Don’t do any stencil marking
‣ Switch to non-shadow casting type

‣ Shadows fade-out range
‣ Artist defined light sizes at which:

‣ Shadows start to fade out
‣ Switch to non-shadow casting light

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Sun Rendering

‣ Full screen quad

‣ Stencil mark potentially lit pixels
‣ Use only sun occlusion from G-Buffer

‣ Run final shader on marked pixels
‣ Approx. 50% of pixels skipped thanks 1st pass

‣ Also skybox/background
‣ Simple directional light model
‣ Shadow = min(RealTimeShadow, Occlusion)

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Sun – Real-Time Shadows

‣ Cascade shadow maps
‣ Provide more shadow detail where required
‣ Divide view frustum into several areas

‣ Split along view distance
‣ Split distances defined by artist

‣ Render shadow map for each area
‣ Max 4 cascades
‣ Max 512x512 pixels each in single texture

‣ Easy to address cascade in final render

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Sun – Real-Time Shadows

‣ Issue: Shadow shimmering
‣ Light cascade frustums follow camera
‣ Sub pixel changes in shadow map

‣ Solution!
‣ Don’t rotate shadow map cascade

‣ Make bounding sphere of cascade frustum
‣ Use it to generate cascade light matrix

‣ Remove sub-pixel movements
‣ Project world origin onto shadow map
‣ Use it to round light matrix to nearest shadow pixel corner

Sun - Colored shadow Cascades - Unstable shadow artifacts

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

MSAA Lighting Details

‣ Run light shader at pixel resolution
‣ Read G-Buffer for both pixel samples
‣ Compute lighting for both samples
‣ Average results and add to frame buffer

‣ Optimization in shadow map filtering
‣ Max 12 shadow taps per pixel
‣ Alternate taps between both samples
‣ Half quality on edges, full quality elsewhere
‣ Performance equal to non-MSAA case

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Forward Rendering Pass

‣ Used for transparent geometry
‣ Single pass solution

‣ Shader has four uberlights
‣ No shadows
‣ Per-vertex lighting version for particles

‣ Lower resolution rendering available
‣ Fill-rate intensive effects
‣ Half and quarter screen size rendering
‣ Half resolution rendering using MSAA HW

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Post-Processing Pass

‣ Highly customizable color correction
‣ Separate curves for shadows, mid-tones, highlight colors, contrast and

brightness
‣ Everything Depth dependent
‣ Per-frame LUT textures generated on SPU

‣ Image based motion blur and depth of field
‣ Internal lens reflection
‣ Film grain filter

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

SPU Usage and Architecture
Putting it all together

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

SPU Usage

‣ We use SPU a lot during rendering
‣ Display list generation

‣ Main display list
‣ Lights and Shadow Maps
‣ Forward rendering

‣ Scene graph traversal / visibility culling
‣ Skinning
‣ Triangle trimming
‣ IBL generation
‣ Particles

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

SPU Usage (cont.)

‣ Everything is data driven
‣ No “virtual void Draw()” calls on objects
‣ Objects store a decision-tree with DrawParts
‣ DrawParts link shader, geometry and flags
‣ Decision tree used for LODs, etc.

‣ SPUs pull rendering data directly from objects
‣ Traverse scenegraph to find objects
‣ Process object's decision-tree to find DrawParts
‣ Create displaylist from DrawParts

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Main scenegraph + displaylist

Shadow scenegraph + displaylist

IBL generationParticles, Skinning

edgeGeom

PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU Architecture

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Main scenegraph + displaylist

Shadow scenegraph + displaylist

IBL generationParticles, Skinning

edgeGeom

PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU Architecture

GAME, AI
PHYSICS

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Main scenegraph + displaylist

Shadow scenegraph + displaylist

IBL generationParticles, Skinning

edgeGeom

PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU Architecture

GAME, AI
PHYSICS

PREPARE
DRAW

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Main scenegraph + displaylist

Shadow scenegraph + displaylist

IBL generationParticles, Skinning

edgeGeom

PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU Architecture

GAME, AI
PHYSICS

PREPARE
DRAW

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Main scenegraph + displaylist

Shadow scenegraph + displaylist

IBL generationParticles, Skinning

edgeGeom

PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU Architecture

GAME, AI
PHYSICS

PREPARE
DRAW

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Main scenegraph + displaylist

Shadow scenegraph + displaylist

IBL generationParticles, Skinning

edgeGeom

PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU Architecture

GAME, AI
PHYSICS

PREPARE
DRAW

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Main scenegraph + displaylist

Shadow scenegraph + displaylist

IBL generationParticles, Skinning

edgeGeom

PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU Architecture

GAME, AI
PHYSICS

PREPARE
DRAW

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Main scenegraph + displaylist

Shadow scenegraph + displaylist

IBL generationParticles, Skinning

edgeGeom

PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU Architecture

GAME, AI
PHYSICS

PREPARE
DRAW

GAME, AI
PHYSICS

PREPARE
DRAW

DRAW
DATA
LOCK

GUERRILLA | DEVELOP CONFERENCE | JULY ‘07 | BRIGHTON

Conclusion

‣ Deferred rendering works well and gives us artistic
freedom to create distinctive Killzone look
‣ MSAA did not prove to be an issue
‣ Complex geometry with no resubmit
‣ Highly dynamic lighting in environments
‣ Extensive post-process

‣ Still a lot of features planned
‣ Ambient occlusion / contact shadows
‣ Shadows on transparent geometry
‣ More efficient anti-aliasing
‣ Dynamic radiosity

