




Killzone 2 has been in the development for just under 4 years. 

During that time we tried a lot of rendering techniques.  

Some are very Killzone 2 specific but some are general. 

 

This talk is about those rendering optimizations and solutions in KZ2 that we feel could be helpful for your next game. 

 

KZ2 goal - realistic and distinctive lighting. 

We wanted technique that allows us to focus on lighting with many dynamic light sources - Deferred shading. 

I‟ll do a quick intro for those who are not familiar with this technique. 

 

How to hit 30FPS? 

We used to have very fat render targets and that costed us a lot of bandwidth. 

A diet for render targets - how we reduced memory footprint and what had to go. 

 

Dirty lighting tricks - lights are our heaviest spot. So we focused mostly on optimization of this part. 

 

Rendering, memory and SPUs - We generate our push buffer on SPUs 

We needed allocator for all the rendering memory. It allows out of order allocations and releases memory as RSX consumes 

the frame. 

 



Forward rendering: 

Take a triangle 

Compute material properties (load all textures, constants) into the shader 

Load all light properties into the shader 

In the same shader compute final lighting of the pixel. 

Repeat for as many lights as needed. 

 

Or... group lights into batches in order to accelerate it - shader combination hell. How do you manage shadow maps. 

 

 

Deferred shading is different. 

Scene geometry rendering is separate from lighting. 

Lighting is very similar to image space post-process. 

This allows us to use large amounts of lights with much simpler engine. 

 

 

Instead of directly shading triangles, we store relevant material information for each visible pixel in a structure called G-

buffer. 

 

G-Buffer - set of render targets. 

We store properties such as position, normal, roughness, albedo... 

...pretty much everything we need to know to generate the final appearance of each pixel later on. 

This happens in a single pass called geometry pass. 



Lighting pass comes right after geometry pass. On the picture you can see the scene and we‟re going to add more lights 

there. 



For each light find all screen pixels that are affected by this light. 

  

For these pixels we read the G-Buffer, compute the lighting equation and add the light contribution to the result buffer.  

If the light casts shadows, we generate the shadow map first. 

We do this in a loop for every light on screen. 

 

The good: 

Shaders which fill G-Buffer are simpler - don‟t include lighting code. 

Light shaders are also simple - don‟t include material computations.  

If multiple lights affect the same region, this does not add any complexity to the code.  

This all makes management of the engine much simpler. 

 

You can have large numbers of lights on screen and the performance only depends on number of pixels they cover and not 

on the number of polygons the scene has. 

 

Drawbacks 

These are mainly related to the fact that you cannot easily make material that would change its appearance based on the 

lighting that affects the pixel. 

But we‟re working on it. 

 











In KZ2 there is of course separate (forward rendering) pass for transparent geometry, particles and coronas that comes after 

lighting pass and also the extensive post-processing pass at the end of the frame, but these are out of the scope of this 

presentation. 



Our G-Buffer (and the back buffer) was at at one point FP16. But FP16 buffers are expensive because of the higher 

bandwidth requirements so we decided to go for RGBA8. 

 

We already knew that proper HDR is not very important for us - our artists like to be in control of features and automatic 

tone mapping is not something that you can control too much. So we gave them extensive color correction filter to 

desaturate the game. 

 

We were able to compress our G-Buffer data to 4xRGBA8 buffers + Z-buffer. This was just above 18mb and therefore we 

decided that we can actually go with Anti-aliasing which doubled the G-Buffer size to just bellow 37mb. 

 

To not further increase the memory consumption, we reuse G-Buffer memory for any render-target that we need after the 

lighting pass - low resolution buffers, post processing buffers, HUD. 

 



We don‟t store position in the g-buffer now (used to have one in FP16 era) - we reconstruct it from the depth buffer. We 

wanted to use position buffer modifications for some displacement effects, but this never materialized so we just removed it. 

 

Our G-Buffer contains view space normal (x and y components are stored in FP16 precision, z is computed on flight), since 

we keep the render targets in RGBA8 format, we needed to store 2xFP16 - cg has instructions to do it without quality loss. 

 

We have 2 channels reserved for screen space motion vectors (for post processing). 



Of course we store the typical material properties too. 

Albedo is any combination of diffuse properties (color, textures) - pretty much anything our artists design in Maya (this is 

actually true for any of g-buffer parameters) 

 

Material roughness - this is how we call the specular exponent. We store it in log range to keep higher precision for low 

exponents (high roughness). 

 

Specular intensity - just single channel as we discovered that having specular material color is not something our artists were 

using. 

 

Sunlight occlusion factor - pre-rendered sunlight shadows. We use it to optimize the performance of the real-time sunlight. 

We mix it with real-time shadows in shader too to achieve nicer look. 

 



Accumulated light color is a buffer where we add all lights and build the final image. It‟s pretty much our back buffer. 

  

Accumulated light color is initialized in the geometry pass with all indirect lighting contributions and all constant terms of 

material/lighting equation (for example emissive light, ambient light or constant scene reflection). Everything is 

multiplied with appropriate texture to produce final term (i.e. diffuse lighting with albedo) 

 

Indirect lighting contribution for static geometry is stored in lightmaps (YUV space for better quality in S3TC5). 

 

Dynamic objects use spherical harmonics (SH) – each level has large set of points where we pre-computed indirect lighting 

and stored it in SH basis. We pick most influential points (and SHs) for each objects and generate unique view 

dependent texture (IBL - image based lighting) of the lighting for that object and frame. 

 

Reflection texture - cube map specified for each level zone. Cheap speculars. 

 

Glow buffer is updated in sync with LAB and contains scaled luminance of LAB. This way we can have HDR input colors 

for the post processing filters such as Bloom, but we use it also in motion blur or depth of field.  



Image from the real-time version of the KZ2 „Bullet‟ commercial. Contains only indirect lighting. 



Note - left side of the screen is without the textures, right side of the screen is with textures. Spot the difference... 



In some cases as much as 300 lights on screen. 

 

Optimizations on the next few slides. 

 

We‟re trying to be lazy here 

Avoid hard work (running the expensive shaders) where possible. Ideally we try to avoid any shading at all. 

 

Work less for MSAA. MSAA means more samples to be lit, but that does not mean we cannot be smart and we can actually 

get the cost closer to the non-MSAA case. 

 

Precompute Sun shadow offline - the Sun shadow buffer mentioned earlier and how we use it to accelerate sunlight 

rendering. 

 

Approximate - if everything else fails and it‟s still slow, we can try to hack our way towards 30fps. 



Don’t run shaders.  

Since lighting pass is done in screen-space you have to be careful what to light and what not. 

When the light is behind the pillar, it is still in the screen space, but not visible. So you want to skip shading here. 

Similarly, when the light just affects the air in the hallway - it is on screen, visible, but it actually affects zero pixels because all are in the greater distance. 

 

The easiest way to avoid the work is to use early cull units of RSX (and we got burned many times on this). 

Therefore it‟s best to use some actual 3D representation of the light in the lighting pass (such as sphere for the point light) and use existing scene depth buffer to help with 
visibility tests and utilize the cull units. 

 

First render back-faces of the light representation with NULL shader, depth test set to „greater‟.  

This allows you to stencil mark pixels that could be affected by the light because they are either inside the volume or even closer to the viewer. 

 

Then front-faces of the light representation with final shader with „less-equal‟ depth tests + stencil test enabled to pass only pixels marked in prev. step. Resulting affected pixels 
are exactly the ones inside the light volume. 

 

Depth bounds test - very cool feature. Test will actually reject pixels if existing depth buffer value is not within given min-max range. This means it can be done very early in 
the pipeline and works great with early depth cull.  

Compute min and max z that the light can affect and setup the depth bounds test before rendering the light representation. 

 

Conditional rendering - for shadow casting lights. Run pixel query during the stencil pass to determine if the light affects at least some pixels. Conditional rendering will instruct 
RSX to skip any render commands if query is zero - and is enabled for both shadow map rendering and final expensive shader. 

 

Stencil/queries are not necessary for the small lights (less than 20% of the screen, no shadow casting) - depth bounds test is enough there. 

 

Optimized light shaders 

Since light shaders are simple in the deferred shading, it‟s easy to have several versions of them for each light - different shadow filtering quality, no-specular, no-projector 
texture. The amount of combinations is still quite small so it‟s easy to run optimal shaders for each light type. 

 

Fade out shadows... 

Since we don‟t have any hard limit on number of shadow casting lights we try to fade-out the real-time shadows for distant (small) lights. After the shadow is faded-out, we can 
switch to the non-shadow casting shader. 

We have default values set-up for this, but artists are free to use their own overrides. 

 

Remove small objects... 

Further optimization to lower vertex processing costs is to remove small objects (small both in shadow map and on-screen) from the shadow map. These objects usually don‟t 
contribute to the shadow too much. 

Again, we have some defaults, but artists can specify the thresholds both per light and per object. 



MSAA 

Pixel consists of individual samples (and these samples are also stored in the g-buffer) 

Each sample has to be lit. 

Samples are the same for non-edge pixels and we try to use this. 

 

Light two samples in one go 

run shader once per pixel,  

read g-buffer for both samples,  

perform two lighting equations 

output the average value. 

 

Gain compared to regular supersampling (lighting samples individually) 

Lighting of course has similar cost, but we can actually save on shadow map filtering. 

Next. 



Motivation 

We use percentage closer filtering for shadows. 

Artists don‟t specify filtering quality per sample (they don‟t care about how the light will be rendered on screen - they just 

want kernel of certain size). Therefore we can just do it per pixel. 

 

Example - light has 8 shadow filtering taps. 

We split filter kernel to 2 disjoint sets (4 taps each) 

Use one set for shadow filtering for one sample, the other set for the second sample. 

 

For non-edge case we have equal g-buffer samples, but different shadow filter taps.  

So we get the same result as performing full filtering (8 taps in example) for the non-msaa case and for the same speed. 

 

Edge case - lower quality, but not noticeable. 

 



Fullscreen + MSAA = Panic. It can affect every pixel/sample of the screen. 

 

To get at least some optimization - divide screen into depth slices. 

 

Each slice has different shadow properties - number of shadow filter taps, shadow map size. 

Allows performance vs. quality scaling. 

 

Sunlight is rendered as fullscreen quad and we use depth bounds test to limit it only to given depth slice. 

 

We finally get to the Sun shadow buffer. We use it to stencil-mark pixels that are completely in shadow and therefore can be 

skipped by expensive real-time sun shader. This is huge saving for us - most of the time close to 50%. 

We also use the „sun shadow‟ buffer in the final shader and we mix it with the real-time shadows. This way we can drop 

real-time shadows for last depth slice and it also hides some artifacts that can happen on depth-slice boundary where we 

have different shadow settings. 



Scene from Corinth river level. 



Sun shadow channel - notice the low resolution. 



Skipped pixels 

Notice characters - IBLs are not part of the sun shadow - we write white. 

Exception - dark areas can have IBLs that have sun shadow in the alpha color. 











Real time shadows only. You can see shadowing errors (halo around the block caused by depth bias of shadow map) and also 

some rather un-pleasant sharp bump mapping caused by light being almost parallel to the block surface. All this was hidden 

by the „sun shadow‟ from the g-buffer. 



Mixed again with „Sun Shadow‟. 

Notice the free ambient occlusion effect (on the ground) we get with this. 



We load albedo, „sun shadow‟ and position for each sample. 

We do shadowing as usual (separate shadow filter for each sample, mix with „sun-shadow‟ too). 

Then we do only single lighting equation to get diffuse and specular lighting - for closest sample, and we use this result also 

for the farther sample. 

We multiply this equation with per-sample albedo and shadow (just like if we had result for each sample). 

Works for non-edge case (g-buffer samples are the same). 

 

Works on for foreground-to-background edge because background has 0 in „sun shadow‟ channel. Since we pick the nearest 

sample, we always use the foreground object to do lighting equation and 0 in the „sun shadow‟ channel ensures that this 

result is not applied to the background. 

 

Edges are still partially anti-aliased - from the geometry pass + usually different albedo and/or shadow helps to hide the 

sharp edge. 

 

If that fails, we assume that the distant scene is heavily post-processed and hidden by the depth of field or particles or color 

correction. 



Think - cascaded shadow maps. 

Image - shadow maps aligned to the view (top view, light comes from the top) 



Shadow map changes per frame 

As viewer moves or rotates. 

Smooth movement - sub-pixel changes in shadow map 

Manifests as shimmering during rendering 



Shadow shimmering example. 

Note that this is modified code to show the problem - there is no additional shadow filtering performed. 



rotation independent -  

Find the bounding sphere of the depth slice region 

Any view rotation will then fit into the sphere. 

 

remove sub-pixel movement -  

Round the smooth shadow map movement to the next shadow map pixel. 

This will assure that even if we generate the shadow map every frame, it will be the same unless viewer moves by more than 

one shadow map pixel. 

 

Check ShaderX6 for details. 



stable shadow example. 

No shimmering of shadows 

See how shadow map “jumps” when camera moves (jumps by 64pixels to show the effect, in reality it jumps by 1 pixel 

exactly). 

Note that this is modified code to show the stable solution - there is no additional shadow filtering performed and real in-

game scene looks much better. 





The problem. 

We have a lot of SPUs either building push buffer or building data for the push buffer. This all happens at the same time, 

even out of order (data generated in different order than the order in which RSX consumes them). 

None of the common solutions for memory management worked for us. 



Our solution 

Take fixed pool of memory and split it into 256k chunks. Each of the chunks represents single allocated block (but we have 

fine grained allocator working on top of these 256k chunks). 

 

We have a table with single slot for each 256k block. This slot contains allocationID - a number specified by the client (i.e. 

skinning code, rendering code) during the allocation. 

 

Allocator also contains the FreeID - single number that identifies which 256k blocks are free. When client calls 

“free(allocationID)” it does not free the memory immediately. It just inserts the marker to the push buffer and when RSX 

passes that point, it copies the value to the FreeID.  

 

Next call to “allocate” will walk throught the table and compare all stored allocationIDs with the FreeID. If 

(table[idx].AllocationID<=FreeID) => block is free and can be re-used. 



out of order - the order in which blocks appear in memory is irrelevant, blocks that would be consumed first (i.e. geometry 

pass) can be allocated later than lighting pass blocks. We‟ll also have lighting pass spawning multiple shadow mapping 

tasks, each allocating first free block it finds. 

 

How does this work? 

The only requirement is to increase the AllocationIDs in the order in which RSX will consume the buffer. 

Therefore we generate a fixed budget of AllocationIDs for a frame and each pass uses IDs only from its range (let‟s say for 

this frame, geometry pass uses IDs from 1000 to 1100, lighting pass will use 1200 to 2000 [and will distribute the range 

among shadow map tasks] and forward pass will use 2100 to 2200. Next frame would be for example 2300 to 2400 for 

geometry pass and so on...). 

 

... of course there is some extra management for AllocationID overflows. 

 

Immediate memory reuse… 

We‟ll show on on next few slides how we build the push buffer for RSX. The main point is that we try to be only few blocks 

ahead of RSX. In ideal case if RSX consumes push buffer from block N, SPUs are generating block N+2. This allows us to 

reuse blocks within the same frame as soon as RSX consumes these. 

 

Allocate memory for skinning early… 

We know how the frame will look - what would be the AllocationID at the end of each logical block (geometry pass, 

lighting pass). Therefore depending on the objects features (transparent yes/no, shadow casting yes/no) we can determine 

the latest point where the skinned vertex arrays are still needed (geometry pass, lighting pass, forward pass, end of frame). 



Example: 

 

Allocate block with ID N (let‟s say for the geometry pass). 

Again - it does not matter what is the block position in memory. 

What matters is that we gave it allocationID N 



Write the RSX stall to prevent RSX entering the block until it is full and we start to add the render commands. 

 

We usually don‟t hit the stall because SPUs are quick enough to fully fill the block and unlock it before RSX hits this point 

(will be shown later). 



When the block is full, allocate new one with ID N+1 to continue with the push buffer generation. 

 

Block N+1 - again - does not matter what is the memory position relative to block N. 



First instruction of the new buffer is be “Free block N” to free the previous block. This means when RSX hits this point, 

block N will become available for any allocations. 



Second instruction is RSX stall just like in the previous case. 

This way RSX can free the old block as soon as possible and will wait until the new block is filled. 



Next we connect old and new block with the jump - we instruct RSX to continue with block N+1. 



... and we remove the RSX stall so if the RSX was fast enough and was actually stalling on that point, it can consume 

commands from block N and then just continue on block N+1 (possibly stall in N+1 until the wait command is removed). 



Then we start to fill the new block and if it‟s full, we proceed as before. 



But it‟s not that simple... 



While we generate the draw command to the push buffer... 



... we also generate the additional data. In this case IBL textures (8x8xRGBA8). And we don‟t store these into separate 

memory block, but we use the other side of the same block used for push buffer. 

 



As we add more and more commands, gap between the blocks becomes smaller… 



... and smaller … 



... and even smaller … 



… until it closes. Then the block is full and we actually allocate block N+1. 

 

We do this to promote memory locality - IBLs are generated just-in-time and the memory this uses will be freed with the 

command that uses it. 



Keep it simple - this is what Deferred shading allowed us to do – we have simple rendering pipeline with few optimizations 

in place to make it run fast & within desired memory budgets. Forward rendering would not allow us to have this level of 

predictability with all possible material/light combinations on screen. 

 

With deferred shading it‟s easy to make project specific optimizations that might not be exactly general and reusable for all 

future projects but are so simple to include/exclude that it makes it worth it. 

 




