

‣Look back at the development of Killzone Shadow Fall

‣What is the Next-Gen look?

‣Key techniques

‣ Image quality and stability

‣Early development started in April 2011

‣The goal was platform defining, true next-gen, Killzone

‣New game direction

‣Fresh look for a divided world

‣Beautiful environments full of detail and contrasts

‣New platform

‣Hardware under development

‣Difficult to define scope of the game

‣No PC fallback for the engine

‣Features in development throughout production

‣Launch title

‣Unmovable release date

‣Limited time for experiments

‣Sometimes you have to kill your darlings

‣ Levels 10 to 100 times larger than in Killzone 3

‣ Largest map is almost 8km long

‣ We don‟t have open world engine

‣ First time we ran into precision issues

‣ Doubled the amount of geometry instances

‣ 10,000 to 25,000 per level section

‣ One instance != one draw call

‣ 689,334 building blocks instances in the game

‣ 200 static lights per section

‣ Another 200 in lightmaps

‣ Roughly 4x more vertex and texel detail

‣ Early guideline that worked

‣ 40,000 triangles per character

‣ Complicated shader networks

‣ 6-12 textures per material

‣Killzone Shadow Fall defining tech features

‣Lighting

‣Shading

‣Reflections

‣Effects

‣ Image fidelity and temporal stability

‣Scalability with the amount of content

‣Everything done with jobs

‣All aspects of lighting complement each other

‣BRDF

‣Assets

‣Lights

‣Volumetrics

‣Reflections

‣Physically based lighting model

‣Artist controllable

‣ Assets reviewed in in-game lighting environments

‣ Also integrated in Maya

‣All lights are area lights

‣ Including textured lights

‣ Consistent specular response

‣ Sunlight

‣ Volumetric

‣ More details in GPU Pro 5

‣Reflections match light model and area lights

‣ Identical glossiness and Fresnel response

‣ Both real-time and cube maps

‣ You should be able to just swap one for another

‣Per-object light probes

‣Lightmaps

‣Need nice unwrapped Us

‣ Static objects only

‣ Level changes break lighting

‣ Wasteful

‣We measured render times in days

‣Decided to use light probes

‣ Static and dynamic geometry supported

‣ Works after level changes

‣ Scalable

‣Applied per pixel

‣Deferred pass

‣ Works on large objects

‣ Uniform look for static and dynamic objects

‣Voxelize the scene

‣1-2m in gameplay areas

‣10m in background

‣Place light probes

‣ In empty voxels

‣ Next to features

‣Build tetrahedron structure

‣ „Light probe interpolation using tetrahedral tessellations‟

‣Tends to generate “slivers”

‣Add fill probes

‣ In empty space

‣Lower frequency

‣More uniform tetrahedrons

‣Few hundred thousand probes per section

‣Per pixel search during lighting

‣Tetrahedrons partitioned into a sparse grid

‣16m3 per cell

‣BSP tree per grid cell

‣Light leaking problematic

‣Store optional data in tetrahedrons

‣Up to 3 occlusion planes

‣Up to 4 occlusion shadow maps

‣One per triangular tetrahedron side

‣15 samples per map

‣Tech became available very late

‣ Too risky to switch

‣Used for all dynamic objects

‣Used outside gameplay areas

‣Saved 500mb per section

‣Only few levels lit exclusively by probes

‣Most levels still use light maps

‣ In use for our next game

‣Particle lighting so far

‣Mostly unlit

‣Forward rendering

‣ Performance and feature limitations

‣Particles need to fit our environments

‣Lighting matching the rest of geometry

‣Support for all our light types

‣Shadows

‣Performance is important

‣G-Buffer for particle data

‣Small footprint

‣Position, Normal, Depth, Accumulated lighting

‣Flat data array

‣Store several reference points per particle

‣8x8, 4x4, 2x2 or 1x1

‣Artist chosen based on size

‣ Normals bent outwards

‣ Initialize with IBL lighting

‣ Integrated into regular lighting pass

‣Runs after each on-screen light

‣Allows to reuse shadow maps

‣Final lighting available in particle shaders

‣ Drive transparency based on lighting

‣ Used for fog or dust

‣Pros

‣ Generic framework - works for any point in space

‣ Builds on strengths of deferred rendering

‣ Support all current and future lighting features

‣Cons

‣ G-Buffer size limits particle count

‣ Interpolation can be visible

‣Shadow map rendering turned out to be slow

‣Up to 60% of lighting budget

‣ 5000+ drawcalls, ~3 million triangles

‣Tens of shadow casting lights

‣Four sunlight shadow cascades

‣Discovered late in production

‣Cannot optimize art

‣Cannot reduce lighting quality

‣Offline generated shadow proxies

‣ Static lights and geometry

‣Only polygons affecting shadow map

‣ 60-80% triangle reduction

‣Single drawcall per light

‣ Dynamic objects rendered separately

‣ 500k triangles

‣Proxy mesh alone does not work for sunlight

‣Too many triangles

‣Too large

‣Hybrid approach

‣Baked shadow map

‣Proxy delta mesh

‣Pros:

‣ Significant CPU and GPU cost reduction

‣ Cheap long distance sun shadows

‣ 3rd and 4th cascades only use shadow map

‣Cons:

‣ Memory cost

‣ Breaks on level geometry change

‣ Offline process costs time

‣One of the most important ingredients of KZ:SF look

‣ Implemented as straightforward view space raymarching

‣ Support for all light configurations

‣ Easily controllable cost vs. quality

‣ Part of deferred lighting pass

‣Rendered at half resolution

‣ Bilateral upscale to full resolution

- Not worth sampling here

‣Raymarch step offset by random value

‣ Increased perceived quality

‣Bilateral blur removes the dither pattern

‣Plain volumetrics look bland

‣Particle systems can add structure

‣ Complete artist control

‣ Reacts to physics, player movement, wind forces

‣Particles rendered into 3D Scattering Amount Buffer

‣ Affects intensity of raymarch samples

‣ 1/8th of native resolution, 16 depth slices

‣ Camera space, quadratic depth distribution

‣Composing with transparencies is problematic

‣Solved by 3D Volume Light Intensity Buffer

‣ Similar idea to Scattering Amount Buffer

‣ Half resolution to match volumetrics

‣ Amount of visible volumetrics after ray marching

‣ Between camera and given depth slice

‣ Includes shadows, light attenuation and textures

‣ GPU Pro 5 - „Volumetric Light Effects in Killzone Shadow Fall‟

‣Consecutive frames are usually very similar

‣Regular rendering is wasteful

‣Render image and throw it away

‣Previous frames can improve the next

‣ Increase visual quality

‣Decrease cost of rendering

‣ Increased quality without extra raymarch samples

‣ Reuse previous volumetric buffer

‣ Decide on color and depth similarities

‣ result = lerp(current, previous, 0.5*saturate(similarity))

‣ Change raymarch offset every frame

‣ Alternate between two configurations

‣ Effectively doubles the sample count*

* Your mileage may vary, might contain traces of nuts

‣Post processing benefits from temporal reprojection

‣ Mostly rendered at lower resolution

‣ Sensitive to undersampling or rasterization artifacts

‣ Smoother motion

‣Bloom

‣Screen Space Ambient Occlusion

‣Godrays

‣Exposure measurement

‣Shader effects created by FX artists

‣ Designed completely in nodegraph editor

‣ Fullscreen passes modifying g-buffer

‣ React to bullet decals or footsteps

‣ Decals write to “user” channel of our g-buffer

‣ Top-down variance shadow map used

‣ Limit rain to outdoors

‣Real-time raytrace system

‣ Dynamic reflections, multiple distances

‣Static localized cubemap zones

‣ Local reflections

‣Static background cubemap

‣ Far away reflections

‣Each stage falls back to next one on miss

‣The zones are placed by artists

‣Two pass cubemap rendering

‣ Clean render with reflections disabled

‣ Secondary bounces with reflections enabled

‣ Rendering takes an hour per section

‣Mipmap filtering matches BRDF specular cone

‣ „Local Image-based Lighting With Parallax-corrected Cubemap‟

‣ Driven by surface roughness and reflection ray length

‣ Affect reflection cone aperture and radius

‣ Determines cubemap mip selection

‣Screen space ray-tracing

‣Stages

‣ Ray-tracing

‣ Filtering and reprojection

‣ Composing with cubemaps

‣Half resolution

‣ Pick different pixel from 2x2 quad every frame

‣ Cover full resolution after 4 frames

‣Constant step in screen XY

‣ Smoother surfaces have smaller step

‣ Reflection vector dependent

‣Ray passes under weapon

‣Hit depth interpolated from last two depths

‣Reproject hit color from last frame

‣ Secondary bounces!

‣Output - hit color / hit mask / glossiness

‣Generate mip chain from ray-trace results

‣ Matches BRDF just like cubemaps

‣ Use mask to discard „miss‟ pixels

‣ Not depth aware!

‣Build the reflection buffer

‣ Use gloss buffer to pick mipmap

‣ Mip does match the cone radius

‣Alternating samples need stabilization

‣Temporal reprojection supersampling filter

‣Blend with history if colors are similar

‣ Use reflection neighborhood color range

‣ „Real-Time Global Illumination and Reflections in Dust 514‟

‣Compose with cubemaps

‣ Ray-trace mask used for blending

‣Originally went for MSAA

‣With temporal reprojection for better quality

‣ Implementation started very late

‣Other features took priority

‣Launch-title „noob‟ mistake

‣ Introduced small performance hit

‣Game assets already balanced

‣No time to find extra GPU performance

‣Temporal reprojection + FXAA

‣ No MSAA

‣ Better image stability

‣Accumulate pixels into history buffer

‣ Contains roughly 16 frames worth of data

‣ Uses color similarities criteria

‣Experimented with sub-pixel jitter

Image by
Andrew Selle

‣Numerical diffusion is a problem

‣ Image gets blurry with reprojection

‣Usually invisible with MSAA

‣Use back and forth error

compensation and correction method

‣ „An Unconditionally Stable MacCormack

Method‟

Image by Andrew Selle

‣Single player targets 1080p 30 fps

‣Multiplayer targets 1080p 60 fps

‣ Faster responses

‣ Smoother gameplay

‣Did not want to downsize the content

‣ Multiplayer needs to look next-gen

‣ No time to create optimized assets

‣Tech solution needed

‣Needed 100% speedup

‣ But not lower quality

‣Reprojection can help here

‣ Render buffers at 960x1080

‣ Alternate rendering of odd/even pixels

‣ Use reprojection to build 1920x1080 frame

‣Results hard to distinguish from 1080p single player

‣ Usually 80% performance gain

‣Keep two previous half-frames

‣Use double reprojection

‣Check similarity of N and N-2

‣Color neighborhood similarity

‣Motion continuity

‣Accept pixel N-1 for similar

frames

‣Otherwise just interpolate from N

‣Keep full-resolution history buffer

‣Only reproject in safe case

‣Motion is coherent

‣Colors are similar

‣Adds extra image stability

‣Recap:

‣ Physically correct lighting is a big step, go the full distance.

‣ Don‟t let the lightmaps disappoint you, fight back.

‣ It is worth investing into particle lighting and volumetrics.

‣ Real-time reflections are the next thing.

‣ Reproject all the things!

Special thanks: Andreas Varga / Guido de Haan / Hugh Malan /

Jaap van Muijden / Jeroen Krebbers / Kenzo ter Elst /

Michal Drobot / Michiel van der Leeuw / Nathan Vos / Will Vale

‣Art-driven force simulation framework

‣Several area affecting primitives

‣ Wind box, explosion, vortex

‣Statically placed

‣Attached to entities or player

‣Focus on complete art-direction control

‣Affects cloth, particles and shaders

‣Calculation is running as compute job

‣ 60,000 points sampled each frame

‣Explicit queries return forces for specific points

‣ Used for cloth simulation or particles

‣Forces cached in grid around the player

‣ Grids - 16x16x16x25cm, 32x32x32x1m, 16x16x16x2m

‣ Data available in shaders

‣ Used for foliage, tarps or water surface

‣ Includes spring solver with few elasticity presets

‣Killzone 3 prioritized streaming with bounding boxes

‣Does not work inside buildings

‣Shadow fall needs 10+GB RAM without streaming

‣Have to stream almost all mipmaps

‣PS4 GPU can report mipmap usage

‣No change to shaders needed

‣Precise estimation for texture streaming

‣Works well with complicated shaders

