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Who are Andreas & Anton? Why would you listen to them? Well, we worked on sound for these games…



We work at Guerrilla, which is one of Sony’s 1st party studios. Here’s a view of our sound studios



Killzone 2 Killzone 3



After Killzone 3, we started working on Killzone Shadow Fall, which was a launch title for the PS4. This was planned as a next-gen title from the beginning.



Here's a short video showing how the game looks and sounds.



Here's a short video showing how the game looks and sounds.



Andreas: But what exactly does next-gen mean?  
We thought next gen sound (initially) wouldn’t be about fancy new DSP but about faster iteration and less optimization. To allow the creation of more flexible sounds that truly can become a part of the game design. We also wanted 
to make sure that the sound team works with the same basic work flow as the rest of  the company. 
So our motivation was to build a cutting edge sound system and tool set, but don't build a new synth. 
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What is Next-Gen Audio?

• Emancipating sound, the team and the asset

• Instantly hearing work in game, never reload

• Extendable system, reusable components

• High run-time performance

• Don’t worry about the synth

Anton
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Why Integrate?

• Gain a community of end users that:

• Can help with complex setup

• Teach you new tricks

• Find bugs

• Benefit mutually from improvements

Anton
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Ideas we had Ideas we implemented Ideas we shipped with
KZ2/KZ3 KZ SF KZ2/KZ3 KZ SF KZ2/KZ3 KZ SF

Motivation for Change
Previous generation very risk averse, failing was not possible

More of the 
ideas 

shipped in 
the game! {

We could 
experiment 

much 
more! { } No 

bad 
ideas!
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Video of iterating on a single sound by re-exporting its wav files from Nuendo and syncing the changes with the running game.
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No More Auditioning Tool

• Game is the inspiration

• Get sound into the game quickly

• No interruptions

• Why audition anywhere else?
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How to Emancipate?

• Make sound engine and tools in-house

• Allows deep integration

• Immediate changes, based on designer feedback

• No arbitrary technical limitations

Andreas



Extendable, Reusable 
and 

High Performance?
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Anton: Sound designers are already used to data flow environments such as Max/MSP and puredata. !
Andreas: But while that’s one good way of thinking about our system, it’s also a bit different from them. Our system doesn’t work at on the sample level or audio rate, i.e. we’re not using our graphs for synthesis, but just for 
playback of already existing waveform data.
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• We will show code

• But you don’t have to be afraid

• Sound designers will never have to look at it
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Graph Sound System

• Generate native code from data flow

• Execute resulting program every 5.333ms (187Hz)

• Used to play samples and modulate parameters

• NOT running actual synthesis

• Dynamic behavior



Sound

Input X

Input Y

Output Z

The graphs we build have certain inputs and outputs and are made up of individual nodes and connections. Note that each graph can also be used as a node, which is very important. 
The functionality of each node is defined in a C++ file, which typically just contains one function. 
When we need to translate this graph into C++ code, we take those node definition files and paste them into a C++ file for the whole graph. 
We then generate the code according to how the nodes are connected, by calling the individual node functions in the right order.
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The graphs we build have certain inputs and outputs and are made up of individual nodes and connections. Note that each graph can also be used as a node, which is very important. 
The functionality of each node is defined in a C++ file, which typically just contains one function. 
When we need to translate this graph into C++ code, we take those node definition files and paste them into a C++ file for the whole graph. 
We then generate the code according to how the nodes are connected, by calling the individual node functions in the right order.



Sound(X, Y, Z)
{
 A(X,outA);
 B(Y,outB);
 C(outA,outB,Z);
} 

Sound.cpp
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The graphs we build have certain inputs and outputs and are made up of individual nodes and connections. Note that each graph can also be used as a node, which is very important. 
The functionality of each node is defined in a C++ file, which typically just contains one function. 
When we need to translate this graph into C++ code, we take those node definition files and paste them into a C++ file for the whole graph. 
We then generate the code according to how the nodes are connected, by calling the individual node functions in the right order.
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So as part of our content pipeline the C++ code that was generated for the graph is then compiled into an object file, and together with other object files gets linked into a dynamic library, which are loaded as PRX files on the 
PS4 at runtime. This allows us to execute the code in the game. 
Our initial attempt was slightly different tough: We’ve first experimented with LLVM using byte code and the LLVM JIT compiler at runtime, which was nice for the initial testing and development. But soon after that we switched to a 
more traditional offline compilation step, using clang and dynamic libraries. 
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The most simple graph sound example 
we can come up with

Lets get to know the system by building a very basic sound
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• Wave node is used to play sample data 
• The on_start input is activated when the sound starts 
• When inStart is active, a voice is created and played 
• So this graph plays one sample when the sound starts
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But what about the code?

Andreas: This is the result of the code generator, it's fairly readable.  
You can see the Wave node function call and how the on_start input of the graph is passed as a parameter. The sample is a constant resource attached to the graph and can be retrieved with this function, which is implemented 
in the engine code. 
Clang’s optimizer creates really tight assembly code from this. It's super fast, so we can run it at a high rate, currently once per synth frame, i.e. every 5.3 ms. 
As you can see, every input of the graph, becomes a parameter of the graph function, and each node input is also a parameter of the node function.  
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But the nice thing is, that the code is not immediately visible. It’s there, and as a programmer you can use it to debug what’s going on, but a sound designer would only see the graph representation.
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Video showing how a sound is created from scratch and injected into the running game.
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Andreas: Now lets add some more dynamic behaviour to the sound. As you can see in the blue inputs node, I’ve added an input called “inDistanceToListener” which is filled in by the engine with the distance in meters between 
this sound and the listener. I use this distance as the X value of a curve lookup node, and use the Y value as the cutoff frequency of a low pass filter of the wave node. The rest is the same as in the previous example. !
Btw: As you can see, the gain inputs are all linear values, from 0 to 1. This is not very sound designer friendly, but it makes it easier to do certain calculations. In case you prefer dB full-scale, then we have a very simple node you can 

put in front to convert from dB to linear values. 
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this sound and the listener. I use this distance as the X value of a curve lookup node, and use the Y value as the cutoff frequency of a low pass filter of the wave node. The rest is the same as in the previous example. !
Btw: As you can see, the gain inputs are all linear values, from 0 to 1. This is not very sound designer friendly, but it makes it easier to do certain calculations. In case you prefer dB full-scale, then we have a very simple node you can 

put in front to convert from dB to linear values. 
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      float inDistanceToListener) 
 { 
  float outYValue = 0; 
  EvaluateCurve(CurveDataPointer, inDistanceToListener,   
        &outYValue); 
!
  bool outAllVoicesDone = false; 
  float outDuration = 0; 
  Wave(_on_start_, false, false, 
     WaveDataPointer, VoiceParameters, outYValue, 
     &outAllVoicesDone, &outDuration); 
 } 

It’s getting a bit more complicated now, but it’s still easy enough to see what’s going on. The inDistanceToListener input of the graph becomes a new graph function parameter. The Evaluate node is now called, and since the 
Wave node depends on the output of the Evaluate node, the Wave node has to be called after the Evaluate node. The code generator uses the dependencies to define the order in which it needs to call each node’s function.
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Adding Nodes

I guess by now you can see how this system allowed us to build powerful dynamic sounds, just limited by the set of nodes we have available. 
But why is it truly extendable? 
That’s because it’s really easy to create a new node in this system. Basically all you need to do is create an asset describing the inputs and outputs of the node (can be done in our editor) and a C++ file containing the 
implementation. 
Our code generator will collect the little snippets of C++ code for each node and create a combined function for each graph. No external libraries are used, even for math we call functions in the game engine. The generated 
graph programs are not linked with anything, so very small and light weight. 
This also means that the game or the editor don’t need to be recompiled to add a simple node. Nodes and graphs are game assets, which get turned into code automatically by the content pipeline.
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implementation. 
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Andreas: Let's look at an example node for a mathematical problem, the obvious ones like add or multiply are trivial, but here's a useful one, converting from musical semitones to a pitch ratio value. So for instance inputting a 
value of 12 semitones, would result in a pitch ratio of 2, i.e. an octave.



  
 void SemitonesToPitchRatio(const float inSemitones,  
          float* outPitchRatio) 
 { 
  *outPitchRatio = Math::Pow(2.0f, inSemitones/12.0f); 
 } 

SemiTonesToPitchRatio.cpp

This shows how easy it is to create a new node. The only additional information that needs to be created is a meta data file that describes the input and output values and their default values. 
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Logic example
Compare two values

Compare

inA outGreater
inB outSmaller

outEqual

Here's another simple example for comparison of values. Typically you have different parts that depend on the comparison result, so it's useful to have "smaller" and "greater than" available at the same time. Also saves us from 
using additional nodes. 



  
 void Compare(const float inA, const float inB,  
      bool* outSmaller, bool* outGreater,  
      bool* outEqual) 
 { 
  *outSmaller   = inA < inB; 
  *outGreater    = inA > inB; 
  *outEqual     = inA == inB;  
 } 

Compare.cpp

The implementation is just as simple. All the comparison results are stored in output parameters. 
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Modulation example
Sine LFO

SineLFO

inFrequency outValue
inAmplitude
inOffset
inPhase

This is the sine LFO node, it will output a sine wave at a given frequency and amplitude. This is a slightly more complicated node.



  
 void SineLFO(const float inFrequency,  
     const float inAmplitude,  
     const float inOffset, const float inPhase,      
        float* outValue, float* phase) 
 { 
  *outValue = inOffset +  
       inAmplitude * Math::Sin((*phase + inPhase) * M_TWO_PI); 
   
  float new_phase = *phase + inFrequency * GraphSound::GetTimeStep(); 
   
  if (new_phase > 1.0f) 
   new_phase -= 1.0f; 
  
  *phase = new_phase; 
 }      

SineLFO.cpp

Let's look at how this is implemented. It's using two functions that are implemented in our engine, one for calculating the sine and one for  getting the time step. If the game time is scaled (for example if we’re running the game 
in slow motion), then the sound time-step will also be adjusted. However it's also possible to have sounds that are not affected by this.  
Normally the graph execution is state less, that means that every time it runs, it does exactly the same, because it doesn't store any information, so it can't depend on previous runs. This node however is an example of 
something that requires state information, and it's possible to do that on a per node basis. So here you can see that it uses a special “phase” parameter, which is stored separately for each instance of the node, and is passed in 
by reference as a pointer. The state system allows us to store any arbitrary set of data, for example a full C++ object, or just a simple value like in this example.  
The Wave node also uses this to store the information about the voices it has created. 
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Nodes built from 
Graphs

Generate a random pitch within a 
range of semitones

RandomRangedPitchRatio

inTrigger outPitchRatio
inMinSemitone
inMaxSemitone

Certain math or logic processing that starts to happen often in sounds can be abstracted into their own nodes, without having to know any programming. Here’s an example of a node, built from an actual graph.



As you can see here, it uses a combination of the random range node, to get a random semitone value, which it then converts to a pitch ratio. 
It also uses the sample&hold node to make sure the value doesn’t change, as normally the random value would be recalculated at every update of the sound, i.e. once every 5.333ms. 
Creating a node like this is basically as simple as selecting a group of nodes, then right-clicking and selecting “Collapse nodes”. The editor will do the rest.
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Experimenting Should Be Safe and Fun

• If your idea cannot fail, you’re not going to go to 
uncharted territory.

• We tried a lot

• Some of it worked, some didn’t

• Little or no code support - all in audio design
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What the Mind Hears, …

• Experiment: Birds should react when you fire gun

• Birds exist as sound only

• Use sound-to-sound messaging system

• Gun sounds notify bird sounds of shot
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Any sound can send a message which can 
be received by any other sound
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• Inspiration:  
Guns have this explosive force in the world 
when they’re fired

• Things that are near start to rattle
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MADDER raycast

• Sweeping raycast 
around listener

• After one revolution, 
closest hit point is used

• Distance, angle and 
material is passed to 
sound
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Material
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MADDER Prototype

Video showing initial MADDER prototype with 4 different materials in scene.
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Four-angle MADDER

Video showing final 4-angle MADDER with 4 materials placed in the scene
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Capture from final game with MADDER disabled



MADDER on

Capture from final game with MADDER enabled
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Capture from final game with MADDER enabled
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How to Debug?

What kind of debugging support did we have? Obviously a sound designer is creating much more complex logic now, and that means bugs will creep in. We need to be able to find problems such as incorrect behaviour quickly.



Manually Placed Debug Probes

SineLFO

inFrequency outValue
inAmplitude
inOffset
inPhase

0.5
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1
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Anton: These are placed by designers into their sounds, to query individual outputs of nodes. The values are shown as a curve on screen, useful for debugging a single value and how it changes over time. Not very useful for 
quickly changing things, such as boolean events. Since the sound graphs execute multiple times per game frame, but the debug visualisation is only drawn at the game frame rate, a quick change can be missed. 
In the final version of the game, these nodes are completely ignored. !
Screenshot!
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Manually Placed Debug Probes

• Just connect any output to visualize it
• Shows debug value on game screen
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Anton: These are placed by designers into their sounds, to query individual outputs of nodes. The values are shown as a curve on screen, useful for debugging a single value and how it changes over time. Not very useful for 
quickly changing things, such as boolean events. Since the sound graphs execute multiple times per game frame, but the debug visualisation is only drawn at the game frame rate, a quick change can be missed. 
In the final version of the game, these nodes are completely ignored. !
Screenshot!
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Can miss quick changes because game 
frame rate is lower than sound update rate!

Manually Placed Debug Probes



Automatically Embedded Debug Probes

  
 EvaluateCurve(CurveDataPointer, inDistanceToListener, 
       &outYValue); 
 DEBUG_PROBE(0, (void*)&outYValue) 

Andreas: Each graph is generated in two versions, one without debugging code (for final game) and one with automatically generated debug probe code for every node. We emit these DEBUG_PROBE macros into the graph 
functions, so we can easily disable the debug support at compile time. 
When executing a graph with debugging enabled, the code in the macro collects the values of the inputs and outputs of every node (and of the graph itself) and passes them to the engine, which stores the information. !
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• All values are recorded, nothing is lost
• Simple in-game debugger to show data

Andreas: Each graph is generated in two versions, one without debugging code (for final game) and one with automatically generated debug probe code for every node. We emit these DEBUG_PROBE macros into the graph 
functions, so we can easily disable the debug support at compile time. 
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Automatically Embedded Debug Probes

  
 EvaluateCurve(CurveDataPointer, inDistanceToListener, 
       &outYValue); 
 DEBUG_PROBE(0, (void*)&outYValue) 

• All values are recorded, nothing is lost
• Simple in-game debugger to show data
• Scrub through recording

Andreas: Each graph is generated in two versions, one without debugging code (for final game) and one with automatically generated debug probe code for every node. We emit these DEBUG_PROBE macros into the graph 
functions, so we can easily disable the debug support at compile time. 
When executing a graph with debugging enabled, the code in the macro collects the values of the inputs and outputs of every node (and of the graph itself) and passes them to the engine, which stores the information. !



Post Mortem

So what when wrong and what went right?
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Andreas: We started working on PS4 technology very early, many parts of the PS4 hardware were still undefined when we started. At one point we even expected the hardware to do more than decoding, i.e. we assumed that 
there might be a way of executing our own DSP code on it. We thought we might have to write custom DSP code for that chip. At that time there were no middleware vendors disclosed yet, so we just couldn’t really talk to them 
about any of this. 
We therefore had to play it safe, so we designed the new sound system around an abstract synth. We’ve created an initial prototype implementation, for use in our PC build. Later on we’ve switched to PS4 hardware. 
Anton: become used to being alpha tester for hardware as a designer. became good audio tester. Other designers hardly noticed the transition from PC to PS4 hardware, as the synth was the same on both.
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Anton: become used to being alpha tester for hardware as a designer. became good audio tester. Other designers hardly noticed the transition from PC to PS4 hardware, as the synth was the same on both.
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Andreas: We started working on PS4 technology very early, many parts of the PS4 hardware were still undefined when we started. At one point we even expected the hardware to do more than decoding, i.e. we assumed that 
there might be a way of executing our own DSP code on it. We thought we might have to write custom DSP code for that chip. At that time there were no middleware vendors disclosed yet, so we just couldn’t really talk to them 
about any of this. 
We therefore had to play it safe, so we designed the new sound system around an abstract synth. We’ve created an initial prototype implementation, for use in our PC build. Later on we’ve switched to PS4 hardware. 
Anton: become used to being alpha tester for hardware as a designer. became good audio tester. Other designers hardly noticed the transition from PC to PS4 hardware, as the synth was the same on both.



Timeline

February 2011 Pre-production begins, hardly any PS4 hardware details yet
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November 2013 Shipped as launch title

Andreas: We started working on PS4 technology very early, many parts of the PS4 hardware were still undefined when we started. At one point we even expected the hardware to do more than decoding, i.e. we assumed that 
there might be a way of executing our own DSP code on it. We thought we might have to write custom DSP code for that chip. At that time there were no middleware vendors disclosed yet, so we just couldn’t really talk to them 
about any of this. 
We therefore had to play it safe, so we designed the new sound system around an abstract synth. We’ve created an initial prototype implementation, for use in our PC build. Later on we’ve switched to PS4 hardware. 
Anton: become used to being alpha tester for hardware as a designer. became good audio tester. Other designers hardly noticed the transition from PC to PS4 hardware, as the synth was the same on both.



Timeline

February 2011 Pre-production begins, hardly any PS4 hardware details yet
November 2011 PC prototype of sound engine

August 2012 Moved over to PS4 hardware
February 2013 PS4 announcement demo (still using software codecs)

June 2013 E3 demo (now using ACP hardware decoding)
November 2013 Shipped as launch title

New system was up and running within 6 months!

Andreas: We started working on PS4 technology very early, many parts of the PS4 hardware were still undefined when we started. At one point we even expected the hardware to do more than decoding, i.e. we assumed that 
there might be a way of executing our own DSP code on it. We thought we might have to write custom DSP code for that chip. At that time there were no middleware vendors disclosed yet, so we just couldn’t really talk to them 
about any of this. 
We therefore had to play it safe, so we designed the new sound system around an abstract synth. We’ve created an initial prototype implementation, for use in our PC build. Later on we’ve switched to PS4 hardware. 
Anton: become used to being alpha tester for hardware as a designer. became good audio tester. Other designers hardly noticed the transition from PC to PS4 hardware, as the synth was the same on both.



“You’re making sound designers do 
programming work, that’ll be a disaster! 

The game will crash all the time!”

This didn't really happen. We had a few buggy nodes, but in general, things worked out fine. What we did is to make sure that if new nodes are peer-reviewed like any other code, especially if it’s written by a non-programmer. 
Also since nodes are so simple and limited in their scope, it’s hard to make something that truly breaks the game.



“This is an unproven idea, why don’t we 
just use some middleware solution?”

There were doubts that we can create new tech and a toolset with a user friendly workflow in time. The safer thing would’ve been to license a middleware solution, but at the time we had to make this decision, no 3rd parties 
were disclosed about PS4 yet, and we couldn’t be sure if they will properly support the PS4 audio hardware. 
Also we were keen on having a solution that’s integrated with our normal asset pipeline, which allowed us to share the tech built for audio with other disciplines. 
Sound designers using the same workflow as artists and game designers is a benefit that middleware can't give us. New nodes created by e.g. game programmers are immediately useful for sound designers, and vice versa. 
All of these reasons led us to push forward with our own tech, to make something that really fits the game and our way of working. !
Anton: Also we wouldn’t have been able to do the kind of deep tool integration that we have now. 



Used by other Disciplines

The fact that the graph system was available in the editor that the whole studio is using meant that it was directly available to all other disciplines.
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Used by other Disciplines

• Graph system became popular

• Used for procedural rigging

• Used for gameplay behavior

• More nodes were added

• Bugs were fixed quicker

The fact that the graph system was available in the editor that the whole studio is using meant that it was directly available to all other disciplines.



Compression Codecs

A little bit more information to show were we came from:  
On PS3 most sounds were ADPCM, a few were PCM, only streaming sounds used MP3 with various bit rates. We had about 20 MB budgeted for in-memory samples. 
This generation we ended up using a combination of PCM and MP3 for in-memory sounds, with a total of about 300MB of memory used at run-time, that's roughly 16x as much as on PS3, but still the same percentage of the whole 
memory (roughly 4%). We didn't use any ADPCM samples anymore (good riddance). The split between PCM and MP3 is roughly 50:50. We used PCM for anything that needs to loop or seek with sample accuracy, and MP3 for 
larger sounds that don’t require precise timing, such as the tails of guns, for example. Obviously we relied on the audio coprocessor of the PS4 to decode our MP3 data. 
We’ve used ATRAC9 for surround streams, but those are not in-memory. 
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A little bit more information to show were we came from:  
On PS3 most sounds were ADPCM, a few were PCM, only streaming sounds used MP3 with various bit rates. We had about 20 MB budgeted for in-memory samples. 
This generation we ended up using a combination of PCM and MP3 for in-memory sounds, with a total of about 300MB of memory used at run-time, that's roughly 16x as much as on PS3, but still the same percentage of the whole 
memory (roughly 4%). We didn't use any ADPCM samples anymore (good riddance). The split between PCM and MP3 is roughly 50:50. We used PCM for anything that needs to loop or seek with sample accuracy, and MP3 for 
larger sounds that don’t require precise timing, such as the tails of guns, for example. Obviously we relied on the audio coprocessor of the PS4 to decode our MP3 data. 
We’ve used ATRAC9 for surround streams, but those are not in-memory. 
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On PS3 most sounds were ADPCM, a few were PCM, only streaming sounds used MP3 with various bit rates. We had about 20 MB budgeted for in-memory samples. 
This generation we ended up using a combination of PCM and MP3 for in-memory sounds, with a total of about 300MB of memory used at run-time, that's roughly 16x as much as on PS3, but still the same percentage of the whole 
memory (roughly 4%). We didn't use any ADPCM samples anymore (good riddance). The split between PCM and MP3 is roughly 50:50. We used PCM for anything that needs to loop or seek with sample accuracy, and MP3 for 
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A little bit more information to show were we came from:  
On PS3 most sounds were ADPCM, a few were PCM, only streaming sounds used MP3 with various bit rates. We had about 20 MB budgeted for in-memory samples. 
This generation we ended up using a combination of PCM and MP3 for in-memory sounds, with a total of about 300MB of memory used at run-time, that's roughly 16x as much as on PS3, but still the same percentage of the whole 
memory (roughly 4%). We didn't use any ADPCM samples anymore (good riddance). The split between PCM and MP3 is roughly 50:50. We used PCM for anything that needs to loop or seek with sample accuracy, and MP3 for 
larger sounds that don’t require precise timing, such as the tails of guns, for example. Obviously we relied on the audio coprocessor of the PS4 to decode our MP3 data. 
We’ve used ATRAC9 for surround streams, but those are not in-memory. 
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A little bit more information to show were we came from:  
On PS3 most sounds were ADPCM, a few were PCM, only streaming sounds used MP3 with various bit rates. We had about 20 MB budgeted for in-memory samples. 
This generation we ended up using a combination of PCM and MP3 for in-memory sounds, with a total of about 300MB of memory used at run-time, that's roughly 16x as much as on PS3, but still the same percentage of the whole 
memory (roughly 4%). We didn't use any ADPCM samples anymore (good riddance). The split between PCM and MP3 is roughly 50:50. We used PCM for anything that needs to loop or seek with sample accuracy, and MP3 for 
larger sounds that don’t require precise timing, such as the tails of guns, for example. Obviously we relied on the audio coprocessor of the PS4 to decode our MP3 data. 
We’ve used ATRAC9 for surround streams, but those are not in-memory. 



Sample Rates on PS3

We had a wide variety of sample rates on the PS3, because it was the main parameter we used to optimize memory usage of sounds. This led to some very low quality samples in the game. 
On the PS4 we only used samples with 48kHz rate. The main way to optimize was to switch them to MP3 encoding and adjust the bit rate.
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On PS4 we use 48 kHz exclusively!

Using sample rate to optimize memory usage! 😩

We had a wide variety of sample rates on the PS3, because it was the main parameter we used to optimize memory usage of sounds. This led to some very low quality samples in the game. 
On the PS4 we only used samples with 48kHz rate. The main way to optimize was to switch them to MP3 encoding and adjust the bit rate.



The Future…

Andreas: Were do we go from here? 
We’re planning to extend and improve this system in the future, and use it for more purposes. E.g. changing the code generator to allow the creation of compute shaders. Also we'll add more elaborate debugging support, and 
lots of new nodes of course. We’ll have more detailed profiling support, to measure the execution time of the graph for each node, to allow us to identify bottleneck nodes that need to be optimised. 
We’re also thinking about different ways to use this system, to create samples on the fly for variations. In this scenario we would add nodes to allow waveforms to be output into buffers, which can then be played at a later point in 
time. 
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Recap

Andreas: So to quickly recap. In order to allow us to fulfil the vision we had for a next-gen sound system and toolset, we’ve created an engine that plays sounds by executing a dataflow logic graph, which was done by 
generating C++ code which is compiled to native code, for performance reasons. We’ve used this system with lots of inputs from the game engine to create sounds that dynamically change to reflect the environment they’re in 
and to make them adapt more directly to the game situation. Thus we’ve allowed sound designers to create behaviour for their sounds themselves, with the possibility to reuse and share this logic among different sounds. 
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New nodes for the graph representation can be easily added as game assets and allow the system to scale with the needs of their users. It has been embraced by other disciplines in our company for various purposes. 
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andreas.varga@guerrilla-games.com 
anton.woldhek@guerrilla-games.com 

@woldhek

Any questions?


