
The Next-Gen Dynamic Sound System
of Killzone Shadow Fall

Take Away

Take Away

• Promote experimentation

Take Away

• Promote experimentation

• Own your tools to allow it to happen

Take Away

• Promote experimentation

• Own your tools to allow it to happen

• Reduce “Idea to Game” time as much as possible

Take Away

Take Away

• If a programmer is in the creative loop, creativity
suffers

Take Away

• If a programmer is in the creative loop, creativity
suffers

• Don't be afraid to give designers a visual
programming tool

Take Away

• If a programmer is in the creative loop, creativity
suffers

• Don't be afraid to give designers a visual
programming tool

• Generating code from assets is easy and powerful

Andreas Varga Anton Woldhek
Senior Tech Programmer Senior Sound Designer

Who are Andreas & Anton? Why would you listen to them? Well, we worked on sound for these games…

Andreas Varga
Killzone Shadow Fall

Killzone 3
Killzone 2
Manhunt 2

Max Payne 2: The Fall of Max Payne

Anton Woldhek

Killzone Shadow Fall
Killzone 3
Killzone 2

!
Creator of the Game Audio Podcast

Senior Tech Programmer Senior Sound Designer

Who are Andreas & Anton? Why would you listen to them? Well, we worked on sound for these games…

We work at Guerrilla, which is one of Sony’s 1st party studios. Here’s a view of our sound studios

Killzone 2 Killzone 3

After Killzone 3, we started working on Killzone Shadow Fall, which was a launch title for the PS4. This was planned as a next-gen title from the beginning.

Here's a short video showing how the game looks and sounds.

Here's a short video showing how the game looks and sounds.

Andreas: But what exactly does next-gen mean?
We thought next gen sound (initially) wouldn’t be about fancy new DSP but about faster iteration and less optimization. To allow the creation of more flexible sounds that truly can become a part of the game design. We also wanted
to make sure that the sound team works with the same basic work flow as the rest of the company.
So our motivation was to build a cutting edge sound system and tool set, but don't build a new synth.

What is Next-Gen Audio?

Anton

What is Next-Gen Audio?

• Emancipating sound, the team and the asset

Anton

What is Next-Gen Audio?

• Emancipating sound, the team and the asset

• Instantly hearing work in game, never reload

Anton

What is Next-Gen Audio?

• Emancipating sound, the team and the asset

• Instantly hearing work in game, never reload

• Extendable system, reusable components

Anton

What is Next-Gen Audio?

• Emancipating sound, the team and the asset

• Instantly hearing work in game, never reload

• Extendable system, reusable components

• High run-time performance

Anton

What is Next-Gen Audio?

• Emancipating sound, the team and the asset

• Instantly hearing work in game, never reload

• Extendable system, reusable components

• High run-time performance

• Don’t worry about the synth

Anton

Why Emancipate?

Anton

Why Emancipate?

• Audio is separate from rest

Anton

Why Emancipate?

• Audio is separate from rest

• Physical: sound proof rooms

Anton

Why Emancipate?

• Audio is separate from rest

• Physical: sound proof rooms

• Mental: closed off sound engine and tools

Anton

Why Emancipate?

• Audio is separate from rest

• Physical: sound proof rooms

• Mental: closed off sound engine and tools

• Should actively pursue integration

Anton

Why Integrate?

Anton

Why Integrate?

• Gain a community of end users that:

Anton

Why Integrate?

• Gain a community of end users that:

• Can help with complex setup

Anton

Why Integrate?

• Gain a community of end users that:

• Can help with complex setup

• Teach you new tricks

Anton

Why Integrate?

• Gain a community of end users that:

• Can help with complex setup

• Teach you new tricks

• Find bugs

Anton

Why Integrate?

• Gain a community of end users that:

• Can help with complex setup

• Teach you new tricks

• Find bugs

• Benefit mutually from improvements

Anton

Motivation for Change

Motivation for Change
Previous generation very risk averse, failing was not possible

Ideas we had Ideas we implemented Ideas we shipped with
KZ2/KZ3 KZ SF KZ2/KZ3 KZ SF KZ2/KZ3 KZ SF

Motivation for Change
Previous generation very risk averse, failing was not possible

Ideas we had Ideas we implemented Ideas we shipped with
KZ2/KZ3 KZ SF KZ2/KZ3 KZ SF KZ2/KZ3 KZ SF

Motivation for Change
Previous generation very risk averse, failing was not possible

Ideas we had Ideas we implemented Ideas we shipped with
KZ2/KZ3 KZ SF KZ2/KZ3 KZ SF KZ2/KZ3 KZ SF

Motivation for Change
Previous generation very risk averse, failing was not possible

Ideas we had Ideas we implemented Ideas we shipped with
KZ2/KZ3 KZ SF KZ2/KZ3 KZ SF KZ2/KZ3 KZ SF

Motivation for Change
Previous generation very risk averse, failing was not possible

We could
experiment

much
more! {

Ideas we had Ideas we implemented Ideas we shipped with
KZ2/KZ3 KZ SF KZ2/KZ3 KZ SF KZ2/KZ3 KZ SF

Motivation for Change
Previous generation very risk averse, failing was not possible

More of the
ideas

shipped in
the game! {

We could
experiment

much
more! {

Ideas we had Ideas we implemented Ideas we shipped with
KZ2/KZ3 KZ SF KZ2/KZ3 KZ SF KZ2/KZ3 KZ SF

Motivation for Change
Previous generation very risk averse, failing was not possible

More of the
ideas

shipped in
the game! {

We could
experiment

much
more! { } No 

bad 
ideas!

Old Workflow

Nuendo

Old Workflow

Nuendo

Old Workflow

Nuendo export WAV 
Assets

Old Workflow

Nuendo export 3rd Party
Sound Tool

WAV 
Assets import

Old Workflow

Nuendo export 3rd Party
Sound Tool

WAV 
Assets import reload Play Game

Old Workflow

Nuendo export 3rd Party
Sound Tool

WAV 
Assets import reload Play Game

Wasted Time Wasted Time Wasted Time

~10s 5s…30s ~2mins

New Workflow

Nuendo

Sound Tool

Running
Game

New Workflow

Nuendo export

Sound Tool

WAV 
Assets

hot-load

Running
Game

hot-load

New Workflow

Nuendo export

Sound Tool

WAV 
Assets

hot-load

Running
Game

hot-load

Wasted Time

~10s

Video of iterating on a single sound by re-exporting its wav files from Nuendo and syncing the changes with the running game.

Video of iterating on a single sound by re-exporting its wav files from Nuendo and syncing the changes with the running game.

No More Auditioning Tool

No More Auditioning Tool

• Game is the inspiration

No More Auditioning Tool

• Game is the inspiration

• Get sound into the game quickly

No More Auditioning Tool

• Game is the inspiration

• Get sound into the game quickly

• No interruptions

No More Auditioning Tool

• Game is the inspiration

• Get sound into the game quickly

• No interruptions

• Why audition anywhere else?

How to Emancipate?

Andreas

How to Emancipate?

• Make sound engine and tools in-house

Andreas

How to Emancipate?

• Make sound engine and tools in-house

• Allows deep integration

Andreas

How to Emancipate?

• Make sound engine and tools in-house

• Allows deep integration

• Immediate changes, based on designer feedback

Andreas

How to Emancipate?

• Make sound engine and tools in-house

• Allows deep integration

• Immediate changes, based on designer feedback

• No arbitrary technical limitations

Andreas

Extendable, Reusable 
and 

High Performance?

April 11, 2011

April 11, 2011

April 11, 2011

!

Anton: Sound designers are already used to data flow environments such as Max/MSP and puredata. !
Andreas: But while that’s one good way of thinking about our system, it’s also a bit different from them. Our system doesn’t work at on the sample level or audio rate, i.e. we’re not using our graphs for synthesis, but just for
playback of already existing waveform data.

!

Max/MSP

Anton: Sound designers are already used to data flow environments such as Max/MSP and puredata. !
Andreas: But while that’s one good way of thinking about our system, it’s also a bit different from them. Our system doesn’t work at on the sample level or audio rate, i.e. we’re not using our graphs for synthesis, but just for
playback of already existing waveform data.

!

Max/MSP Pure Data

Anton: Sound designers are already used to data flow environments such as Max/MSP and puredata. !
Andreas: But while that’s one good way of thinking about our system, it’s also a bit different from them. Our system doesn’t work at on the sample level or audio rate, i.e. we’re not using our graphs for synthesis, but just for
playback of already existing waveform data.

⚠️ Technical Details Ahead! ⚠️

⚠️ Technical Details Ahead! ⚠️

• We will show code

⚠️ Technical Details Ahead! ⚠️

• We will show code

• But you don’t have to be afraid

⚠️ Technical Details Ahead! ⚠️

• We will show code

• But you don’t have to be afraid

• Sound designers will never have to look at it

Graph Sound System

Graph Sound System

• Generate native code from data flow

Graph Sound System

• Generate native code from data flow

• Execute resulting program every 5.333ms (187Hz)

Graph Sound System

• Generate native code from data flow

• Execute resulting program every 5.333ms (187Hz)

• Used to play samples and modulate parameters

Graph Sound System

• Generate native code from data flow

• Execute resulting program every 5.333ms (187Hz)

• Used to play samples and modulate parameters

• NOT running actual synthesis

Graph Sound System

• Generate native code from data flow

• Execute resulting program every 5.333ms (187Hz)

• Used to play samples and modulate parameters

• NOT running actual synthesis

• Dynamic behavior

Sound

Input X

Input Y

Output Z

The graphs we build have certain inputs and outputs and are made up of individual nodes and connections. Note that each graph can also be used as a node, which is very important.
The functionality of each node is defined in a C++ file, which typically just contains one function.
When we need to translate this graph into C++ code, we take those node definition files and paste them into a C++ file for the whole graph.
We then generate the code according to how the nodes are connected, by calling the individual node functions in the right order.

Sound

Node A

Node C

Node B

Input X

Input Y

Output Z

The graphs we build have certain inputs and outputs and are made up of individual nodes and connections. Note that each graph can also be used as a node, which is very important.
The functionality of each node is defined in a C++ file, which typically just contains one function.
When we need to translate this graph into C++ code, we take those node definition files and paste them into a C++ file for the whole graph.
We then generate the code according to how the nodes are connected, by calling the individual node functions in the right order.

Sound

Node A

Node C

Node B

Input X

Input Y

Output Z

The graphs we build have certain inputs and outputs and are made up of individual nodes and connections. Note that each graph can also be used as a node, which is very important.
The functionality of each node is defined in a C++ file, which typically just contains one function.
When we need to translate this graph into C++ code, we take those node definition files and paste them into a C++ file for the whole graph.
We then generate the code according to how the nodes are connected, by calling the individual node functions in the right order.

Sound

Node A

Node C

Node B

A.cpp

B.cpp

C.cpp

Input X

Input Y

Output Z

The graphs we build have certain inputs and outputs and are made up of individual nodes and connections. Note that each graph can also be used as a node, which is very important.
The functionality of each node is defined in a C++ file, which typically just contains one function.
When we need to translate this graph into C++ code, we take those node definition files and paste them into a C++ file for the whole graph.
We then generate the code according to how the nodes are connected, by calling the individual node functions in the right order.

A.cpp

B.cpp

C.cpp

The graphs we build have certain inputs and outputs and are made up of individual nodes and connections. Note that each graph can also be used as a node, which is very important.
The functionality of each node is defined in a C++ file, which typically just contains one function.
When we need to translate this graph into C++ code, we take those node definition files and paste them into a C++ file for the whole graph.
We then generate the code according to how the nodes are connected, by calling the individual node functions in the right order.

A.cpp

B.cpp

C.cpp

Sound.cpp

The graphs we build have certain inputs and outputs and are made up of individual nodes and connections. Note that each graph can also be used as a node, which is very important.
The functionality of each node is defined in a C++ file, which typically just contains one function.
When we need to translate this graph into C++ code, we take those node definition files and paste them into a C++ file for the whole graph.
We then generate the code according to how the nodes are connected, by calling the individual node functions in the right order.

Sound.cpp

A(inA, outA) { … }
B(inB, outB) { … }
C(inX, inY, outZ) { … }

The graphs we build have certain inputs and outputs and are made up of individual nodes and connections. Note that each graph can also be used as a node, which is very important.
The functionality of each node is defined in a C++ file, which typically just contains one function.
When we need to translate this graph into C++ code, we take those node definition files and paste them into a C++ file for the whole graph.
We then generate the code according to how the nodes are connected, by calling the individual node functions in the right order.

Sound(X, Y, Z)
{
 A(X,outA);
 B(Y,outB);
 C(outA,outB,Z);
}

Sound.cpp

A(inA, outA) { … }
B(inB, outB) { … }
C(inX, inY, outZ) { … }

The graphs we build have certain inputs and outputs and are made up of individual nodes and connections. Note that each graph can also be used as a node, which is very important.
The functionality of each node is defined in a C++ file, which typically just contains one function.
When we need to translate this graph into C++ code, we take those node definition files and paste them into a C++ file for the whole graph.
We then generate the code according to how the nodes are connected, by calling the individual node functions in the right order.

Sound.cpp

So as part of our content pipeline the C++ code that was generated for the graph is then compiled into an object file, and together with other object files gets linked into a dynamic library, which are loaded as PRX files on the
PS4 at runtime. This allows us to execute the code in the game.
Our initial attempt was slightly different tough: We’ve first experimented with LLVM using byte code and the LLVM JIT compiler at runtime, which was nice for the initial testing and development. But soon after that we switched to a
more traditional offline compilation step, using clang and dynamic libraries.

Sound.cpp compile

So as part of our content pipeline the C++ code that was generated for the graph is then compiled into an object file, and together with other object files gets linked into a dynamic library, which are loaded as PRX files on the
PS4 at runtime. This allows us to execute the code in the game.
Our initial attempt was slightly different tough: We’ve first experimented with LLVM using byte code and the LLVM JIT compiler at runtime, which was nice for the initial testing and development. But soon after that we switched to a
more traditional offline compilation step, using clang and dynamic libraries.

Sound.cpp compile Sound.o

So as part of our content pipeline the C++ code that was generated for the graph is then compiled into an object file, and together with other object files gets linked into a dynamic library, which are loaded as PRX files on the
PS4 at runtime. This allows us to execute the code in the game.
Our initial attempt was slightly different tough: We’ve first experimented with LLVM using byte code and the LLVM JIT compiler at runtime, which was nice for the initial testing and development. But soon after that we switched to a
more traditional offline compilation step, using clang and dynamic libraries.

Sound.cpp compile Sound.o compile Sound2.ocompile Sound3.ocompile Sound4.o
Sound2.cpp

Sound3.cpp
Sound4.cpp

So as part of our content pipeline the C++ code that was generated for the graph is then compiled into an object file, and together with other object files gets linked into a dynamic library, which are loaded as PRX files on the
PS4 at runtime. This allows us to execute the code in the game.
Our initial attempt was slightly different tough: We’ve first experimented with LLVM using byte code and the LLVM JIT compiler at runtime, which was nice for the initial testing and development. But soon after that we switched to a
more traditional offline compilation step, using clang and dynamic libraries.

Sound.cpp compile Sound.o compile Sound2.ocompile Sound3.ocompile Sound4.o

link

Sound2.cpp
Sound3.cpp

Sound4.cpp

So as part of our content pipeline the C++ code that was generated for the graph is then compiled into an object file, and together with other object files gets linked into a dynamic library, which are loaded as PRX files on the
PS4 at runtime. This allows us to execute the code in the game.
Our initial attempt was slightly different tough: We’ve first experimented with LLVM using byte code and the LLVM JIT compiler at runtime, which was nice for the initial testing and development. But soon after that we switched to a
more traditional offline compilation step, using clang and dynamic libraries.

Sound.cpp compile Sound.o compile Sound2.ocompile Sound3.ocompile Sound4.o

Dynamic Library (PRX)

link

Sound2.cpp
Sound3.cpp

Sound4.cpp

So as part of our content pipeline the C++ code that was generated for the graph is then compiled into an object file, and together with other object files gets linked into a dynamic library, which are loaded as PRX files on the
PS4 at runtime. This allows us to execute the code in the game.
Our initial attempt was slightly different tough: We’ve first experimented with LLVM using byte code and the LLVM JIT compiler at runtime, which was nice for the initial testing and development. But soon after that we switched to a
more traditional offline compilation step, using clang and dynamic libraries.

Sound.cpp compile Sound.o compile Sound2.ocompile Sound3.ocompile Sound4.o

Dynamic Library (PRX)

link

hot-load

Sound2.cpp
Sound3.cpp

Sound4.cpp

So as part of our content pipeline the C++ code that was generated for the graph is then compiled into an object file, and together with other object files gets linked into a dynamic library, which are loaded as PRX files on the
PS4 at runtime. This allows us to execute the code in the game.
Our initial attempt was slightly different tough: We’ve first experimented with LLVM using byte code and the LLVM JIT compiler at runtime, which was nice for the initial testing and development. But soon after that we switched to a
more traditional offline compilation step, using clang and dynamic libraries.

Sound.cpp compile Sound.o compile Sound2.ocompile Sound3.ocompile Sound4.o

Dynamic Library (PRX)

link

Execute Sound() in Game hot-load

Sound2.cpp
Sound3.cpp

Sound4.cpp

So as part of our content pipeline the C++ code that was generated for the graph is then compiled into an object file, and together with other object files gets linked into a dynamic library, which are loaded as PRX files on the
PS4 at runtime. This allows us to execute the code in the game.
Our initial attempt was slightly different tough: We’ve first experimented with LLVM using byte code and the LLVM JIT compiler at runtime, which was nice for the initial testing and development. But soon after that we switched to a
more traditional offline compilation step, using clang and dynamic libraries.

The most simple graph sound example
we can come up with

Lets get to know the system by building a very basic sound

Wave

inStart

inWave (sample data)

Inputs

on_start
on_stop

Other Voice

Parameters:

Dry Gain,

Wet Gain,

LFE Gain, etc.

inStop

}
Game

Parameters{

• Wave node is used to play sample data

Wave

inStart

inWave (sample data)

Inputs

on_start
on_stop

Other Voice

Parameters:

Dry Gain,

Wet Gain,

LFE Gain, etc.

inStop

}
Game

Parameters{

• Wave node is used to play sample data
• The on_start input is activated when the sound starts

Wave

inStart

inWave (sample data)

Inputs

on_start
on_stop

Other Voice

Parameters:

Dry Gain,

Wet Gain,

LFE Gain, etc.

inStop

}
Game

Parameters{

• Wave node is used to play sample data
• The on_start input is activated when the sound starts
• When inStart is active, a voice is created and played

Wave

inStart

inWave (sample data)

Inputs

on_start
on_stop

Other Voice

Parameters:

Dry Gain,

Wet Gain,

LFE Gain, etc.

inStop

}
Game

Parameters{

• Wave node is used to play sample data
• The on_start input is activated when the sound starts
• When inStart is active, a voice is created and played
• So this graph plays one sample when the sound starts

Wave

inStart

inWave (sample data)

Inputs

on_start
on_stop

Other Voice

Parameters:

Dry Gain,

Wet Gain,

LFE Gain, etc.

inStop

}
Game

Parameters{

But what about the code?

Andreas: This is the result of the code generator, it's fairly readable.
You can see the Wave node function call and how the on_start input of the graph is passed as a parameter. The sample is a constant resource attached to the graph and can be retrieved with this function, which is implemented
in the engine code.
Clang’s optimizer creates really tight assembly code from this. It's super fast, so we can run it at a high rate, currently once per synth frame, i.e. every 5.3 ms.
As you can see, every input of the graph, becomes a parameter of the graph function, and each node input is also a parameter of the node function.

But what about the code?
!
!
 void Sound(bool _on_start_, bool _on_stop_)
 {
 bool outAllVoicesDone = false;
 float outDuration = 0;
!
 Wave(_on_start_, false, false,
 WaveDataPointer, VoiceParameters, ...,
 &outAllVoicesDone, &outDuration);
 }

Andreas: This is the result of the code generator, it's fairly readable.
You can see the Wave node function call and how the on_start input of the graph is passed as a parameter. The sample is a constant resource attached to the graph and can be retrieved with this function, which is implemented
in the engine code.
Clang’s optimizer creates really tight assembly code from this. It's super fast, so we can run it at a high rate, currently once per synth frame, i.e. every 5.3 ms.
As you can see, every input of the graph, becomes a parameter of the graph function, and each node input is also a parameter of the node function.

But what about the code?
!
!
 void Sound(bool _on_start_, bool _on_stop_)
 {
 bool outAllVoicesDone = false;
 float outDuration = 0;
!
 Wave(_on_start_, false, false,
 WaveDataPointer, VoiceParameters, ...,
 &outAllVoicesDone, &outDuration);
 }

Andreas: This is the result of the code generator, it's fairly readable.
You can see the Wave node function call and how the on_start input of the graph is passed as a parameter. The sample is a constant resource attached to the graph and can be retrieved with this function, which is implemented
in the engine code.
Clang’s optimizer creates really tight assembly code from this. It's super fast, so we can run it at a high rate, currently once per synth frame, i.e. every 5.3 ms.
As you can see, every input of the graph, becomes a parameter of the graph function, and each node input is also a parameter of the node function.

But what about the code?
!
!
 void Sound(bool _on_start_, bool _on_stop_)
 {
 bool outAllVoicesDone = false;
 float outDuration = 0;
!
 Wave(_on_start_, false, false,
 WaveDataPointer, VoiceParameters, ...,
 &outAllVoicesDone, &outDuration);
 }

Andreas: This is the result of the code generator, it's fairly readable.
You can see the Wave node function call and how the on_start input of the graph is passed as a parameter. The sample is a constant resource attached to the graph and can be retrieved with this function, which is implemented
in the engine code.
Clang’s optimizer creates really tight assembly code from this. It's super fast, so we can run it at a high rate, currently once per synth frame, i.e. every 5.3 ms.
As you can see, every input of the graph, becomes a parameter of the graph function, and each node input is also a parameter of the node function.

But what about the code?
!
!
 void Sound(bool _on_start_, bool _on_stop_)
 {
 bool outAllVoicesDone = false;
 float outDuration = 0;
!
 Wave(_on_start_, false, false,
 WaveDataPointer, VoiceParameters, ...,
 &outAllVoicesDone, &outDuration);
 }

#include <Wave.cpp>

Andreas: This is the result of the code generator, it's fairly readable.
You can see the Wave node function call and how the on_start input of the graph is passed as a parameter. The sample is a constant resource attached to the graph and can be retrieved with this function, which is implemented
in the engine code.
Clang’s optimizer creates really tight assembly code from this. It's super fast, so we can run it at a high rate, currently once per synth frame, i.e. every 5.3 ms.
As you can see, every input of the graph, becomes a parameter of the graph function, and each node input is also a parameter of the node function.

But the nice thing is, that the code is not immediately visible. It’s there, and as a programmer you can use it to debug what’s going on, but a sound designer would only see the graph representation.

Anton: Now let's inject the sound into the game and play it, for testing purposes.
Video showing how a sound is created from scratch and injected into the running game.

Anton: Now let's inject the sound into the game and play it, for testing purposes.
Video showing how a sound is created from scratch and injected into the running game.

Andreas: Now lets add some more dynamic behaviour to the sound. As you can see in the blue inputs node, I’ve added an input called “inDistanceToListener” which is filled in by the engine with the distance in meters between
this sound and the listener. I use this distance as the X value of a curve lookup node, and use the Y value as the cutoff frequency of a low pass filter of the wave node. The rest is the same as in the previous example. !
Btw: As you can see, the gain inputs are all linear values, from 0 to 1. This is not very sound designer friendly, but it makes it easier to do certain calculations. In case you prefer dB full-scale, then we have a very simple node you can

put in front to convert from dB to linear values.

Andreas: Now lets add some more dynamic behaviour to the sound. As you can see in the blue inputs node, I’ve added an input called “inDistanceToListener” which is filled in by the engine with the distance in meters between
this sound and the listener. I use this distance as the X value of a curve lookup node, and use the Y value as the cutoff frequency of a low pass filter of the wave node. The rest is the same as in the previous example. !
Btw: As you can see, the gain inputs are all linear values, from 0 to 1. This is not very sound designer friendly, but it makes it easier to do certain calculations. In case you prefer dB full-scale, then we have a very simple node you can

put in front to convert from dB to linear values.

Andreas: Now lets add some more dynamic behaviour to the sound. As you can see in the blue inputs node, I’ve added an input called “inDistanceToListener” which is filled in by the engine with the distance in meters between
this sound and the listener. I use this distance as the X value of a curve lookup node, and use the Y value as the cutoff frequency of a low pass filter of the wave node. The rest is the same as in the previous example. !
Btw: As you can see, the gain inputs are all linear values, from 0 to 1. This is not very sound designer friendly, but it makes it easier to do certain calculations. In case you prefer dB full-scale, then we have a very simple node you can

put in front to convert from dB to linear values.

Andreas: Now lets add some more dynamic behaviour to the sound. As you can see in the blue inputs node, I’ve added an input called “inDistanceToListener” which is filled in by the engine with the distance in meters between
this sound and the listener. I use this distance as the X value of a curve lookup node, and use the Y value as the cutoff frequency of a low pass filter of the wave node. The rest is the same as in the previous example. !
Btw: As you can see, the gain inputs are all linear values, from 0 to 1. This is not very sound designer friendly, but it makes it easier to do certain calculations. In case you prefer dB full-scale, then we have a very simple node you can

put in front to convert from dB to linear values.

Andreas: Now lets add some more dynamic behaviour to the sound. As you can see in the blue inputs node, I’ve added an input called “inDistanceToListener” which is filled in by the engine with the distance in meters between
this sound and the listener. I use this distance as the X value of a curve lookup node, and use the Y value as the cutoff frequency of a low pass filter of the wave node. The rest is the same as in the previous example. !
Btw: As you can see, the gain inputs are all linear values, from 0 to 1. This is not very sound designer friendly, but it makes it easier to do certain calculations. In case you prefer dB full-scale, then we have a very simple node you can

put in front to convert from dB to linear values.

 void Sound(bool _on_start_, bool _on_stop_,
 float inDistanceToListener)
 {
 float outYValue = 0;
 EvaluateCurve(CurveDataPointer, inDistanceToListener,
 &outYValue);
!
 bool outAllVoicesDone = false;
 float outDuration = 0;
 Wave(_on_start_, false, false,
 WaveDataPointer, VoiceParameters, outYValue,
 &outAllVoicesDone, &outDuration);
 }

It’s getting a bit more complicated now, but it’s still easy enough to see what’s going on. The inDistanceToListener input of the graph becomes a new graph function parameter. The Evaluate node is now called, and since the
Wave node depends on the output of the Evaluate node, the Wave node has to be called after the Evaluate node. The code generator uses the dependencies to define the order in which it needs to call each node’s function.

 void Sound(bool _on_start_, bool _on_stop_,
 float inDistanceToListener)
 {
 float outYValue = 0;
 EvaluateCurve(CurveDataPointer, inDistanceToListener,
 &outYValue);
!
 bool outAllVoicesDone = false;
 float outDuration = 0;
 Wave(_on_start_, false, false,
 WaveDataPointer, VoiceParameters, outYValue,
 &outAllVoicesDone, &outDuration);
 }

It’s getting a bit more complicated now, but it’s still easy enough to see what’s going on. The inDistanceToListener input of the graph becomes a new graph function parameter. The Evaluate node is now called, and since the
Wave node depends on the output of the Evaluate node, the Wave node has to be called after the Evaluate node. The code generator uses the dependencies to define the order in which it needs to call each node’s function.

 void Sound(bool _on_start_, bool _on_stop_,
 float inDistanceToListener)
 {
 float outYValue = 0;
 EvaluateCurve(CurveDataPointer, inDistanceToListener,
 &outYValue);
!
 bool outAllVoicesDone = false;
 float outDuration = 0;
 Wave(_on_start_, false, false,
 WaveDataPointer, VoiceParameters, outYValue,
 &outAllVoicesDone, &outDuration);
 }

It’s getting a bit more complicated now, but it’s still easy enough to see what’s going on. The inDistanceToListener input of the graph becomes a new graph function parameter. The Evaluate node is now called, and since the
Wave node depends on the output of the Evaluate node, the Wave node has to be called after the Evaluate node. The code generator uses the dependencies to define the order in which it needs to call each node’s function.

 void Sound(bool _on_start_, bool _on_stop_,
 float inDistanceToListener)
 {
 float outYValue = 0;
 EvaluateCurve(CurveDataPointer, inDistanceToListener,
 &outYValue);
!
 bool outAllVoicesDone = false;
 float outDuration = 0;
 Wave(_on_start_, false, false,
 WaveDataPointer, VoiceParameters, outYValue,
 &outAllVoicesDone, &outDuration);
 }

It’s getting a bit more complicated now, but it’s still easy enough to see what’s going on. The inDistanceToListener input of the graph becomes a new graph function parameter. The Evaluate node is now called, and since the
Wave node depends on the output of the Evaluate node, the Wave node has to be called after the Evaluate node. The code generator uses the dependencies to define the order in which it needs to call each node’s function.

 void Sound(bool _on_start_, bool _on_stop_,
 float inDistanceToListener)
 {
 float outYValue = 0;
 EvaluateCurve(CurveDataPointer, inDistanceToListener,
 &outYValue);
!
 bool outAllVoicesDone = false;
 float outDuration = 0;
 Wave(_on_start_, false, false,
 WaveDataPointer, VoiceParameters, outYValue,
 &outAllVoicesDone, &outDuration);
 }

It’s getting a bit more complicated now, but it’s still easy enough to see what’s going on. The inDistanceToListener input of the graph becomes a new graph function parameter. The Evaluate node is now called, and since the
Wave node depends on the output of the Evaluate node, the Wave node has to be called after the Evaluate node. The code generator uses the dependencies to define the order in which it needs to call each node’s function.

 void Sound(bool _on_start_, bool _on_stop_,
 float inDistanceToListener)
 {
 float outYValue = 0;
 EvaluateCurve(CurveDataPointer, inDistanceToListener,
 &outYValue);
!
 bool outAllVoicesDone = false;
 float outDuration = 0;
 Wave(_on_start_, false, false,
 WaveDataPointer, VoiceParameters, outYValue,
 &outAllVoicesDone, &outDuration);
 }

 #include <EvaluateCurve.cpp>
 #include <Wave.cpp>

It’s getting a bit more complicated now, but it’s still easy enough to see what’s going on. The inDistanceToListener input of the graph becomes a new graph function parameter. The Evaluate node is now called, and since the
Wave node depends on the output of the Evaluate node, the Wave node has to be called after the Evaluate node. The code generator uses the dependencies to define the order in which it needs to call each node’s function.

Video showing effect of distance-based low pass filtering example

Video showing effect of distance-based low pass filtering example

Adding Nodes

I guess by now you can see how this system allowed us to build powerful dynamic sounds, just limited by the set of nodes we have available.
But why is it truly extendable?
That’s because it’s really easy to create a new node in this system. Basically all you need to do is create an asset describing the inputs and outputs of the node (can be done in our editor) and a C++ file containing the
implementation.
Our code generator will collect the little snippets of C++ code for each node and create a combined function for each graph. No external libraries are used, even for math we call functions in the game engine. The generated
graph programs are not linked with anything, so very small and light weight.
This also means that the game or the editor don’t need to be recompiled to add a simple node. Nodes and graphs are game assets, which get turned into code automatically by the content pipeline.

Adding Nodes

• Create C++ file with one function

I guess by now you can see how this system allowed us to build powerful dynamic sounds, just limited by the set of nodes we have available.
But why is it truly extendable?
That’s because it’s really easy to create a new node in this system. Basically all you need to do is create an asset describing the inputs and outputs of the node (can be done in our editor) and a C++ file containing the
implementation.
Our code generator will collect the little snippets of C++ code for each node and create a combined function for each graph. No external libraries are used, even for math we call functions in the game engine. The generated
graph programs are not linked with anything, so very small and light weight.
This also means that the game or the editor don’t need to be recompiled to add a simple node. Nodes and graphs are game assets, which get turned into code automatically by the content pipeline.

Adding Nodes

• Create C++ file with one function

• Create small description file for node

I guess by now you can see how this system allowed us to build powerful dynamic sounds, just limited by the set of nodes we have available.
But why is it truly extendable?
That’s because it’s really easy to create a new node in this system. Basically all you need to do is create an asset describing the inputs and outputs of the node (can be done in our editor) and a C++ file containing the
implementation.
Our code generator will collect the little snippets of C++ code for each node and create a combined function for each graph. No external libraries are used, even for math we call functions in the game engine. The generated
graph programs are not linked with anything, so very small and light weight.
This also means that the game or the editor don’t need to be recompiled to add a simple node. Nodes and graphs are game assets, which get turned into code automatically by the content pipeline.

Adding Nodes

• Create C++ file with one function

• Create small description file for node

• List inputs and outputs

I guess by now you can see how this system allowed us to build powerful dynamic sounds, just limited by the set of nodes we have available.
But why is it truly extendable?
That’s because it’s really easy to create a new node in this system. Basically all you need to do is create an asset describing the inputs and outputs of the node (can be done in our editor) and a C++ file containing the
implementation.
Our code generator will collect the little snippets of C++ code for each node and create a combined function for each graph. No external libraries are used, even for math we call functions in the game engine. The generated
graph programs are not linked with anything, so very small and light weight.
This also means that the game or the editor don’t need to be recompiled to add a simple node. Nodes and graphs are game assets, which get turned into code automatically by the content pipeline.

Adding Nodes

• Create C++ file with one function

• Create small description file for node

• List inputs and outputs

• Define the default values

I guess by now you can see how this system allowed us to build powerful dynamic sounds, just limited by the set of nodes we have available.
But why is it truly extendable?
That’s because it’s really easy to create a new node in this system. Basically all you need to do is create an asset describing the inputs and outputs of the node (can be done in our editor) and a C++ file containing the
implementation.
Our code generator will collect the little snippets of C++ code for each node and create a combined function for each graph. No external libraries are used, even for math we call functions in the game engine. The generated
graph programs are not linked with anything, so very small and light weight.
This also means that the game or the editor don’t need to be recompiled to add a simple node. Nodes and graphs are game assets, which get turned into code automatically by the content pipeline.

Adding Nodes

• Create C++ file with one function

• Create small description file for node

• List inputs and outputs

• Define the default values

• No need to recompile game, just add assets

I guess by now you can see how this system allowed us to build powerful dynamic sounds, just limited by the set of nodes we have available.
But why is it truly extendable?
That’s because it’s really easy to create a new node in this system. Basically all you need to do is create an asset describing the inputs and outputs of the node (can be done in our editor) and a C++ file containing the
implementation.
Our code generator will collect the little snippets of C++ code for each node and create a combined function for each graph. No external libraries are used, even for math we call functions in the game engine. The generated
graph programs are not linked with anything, so very small and light weight.
This also means that the game or the editor don’t need to be recompiled to add a simple node. Nodes and graphs are game assets, which get turned into code automatically by the content pipeline.

Math example
Convert semitones to pitch ratio

SemitonesToPitchRatio

inSemiTones outPitchRatio

SemitonesToPitchRatio

inSemiTones outPitchRatio

Andreas: Let's look at an example node for a mathematical problem, the obvious ones like add or multiply are trivial, but here's a useful one, converting from musical semitones to a pitch ratio value. So for instance inputting a
value of 12 semitones, would result in a pitch ratio of 2, i.e. an octave.

 void SemitonesToPitchRatio(const float inSemitones,
 float* outPitchRatio)
 {
 *outPitchRatio = Math::Pow(2.0f, inSemitones/12.0f);
 }

SemiTonesToPitchRatio.cpp

This shows how easy it is to create a new node. The only additional information that needs to be created is a meta data file that describes the input and output values and their default values.

Math example
Convert semitones to pitch ratio

SemitonesToPitchRatio

inSemiTones outPitchRatio

Logic example
Compare two values

Compare

inA outGreater
inB outSmaller

outEqual

Here's another simple example for comparison of values. Typically you have different parts that depend on the comparison result, so it's useful to have "smaller" and "greater than" available at the same time. Also saves us from
using additional nodes.

 void Compare(const float inA, const float inB,
 bool* outSmaller, bool* outGreater,
 bool* outEqual)
 {
 *outSmaller = inA < inB;
 *outGreater = inA > inB;
 *outEqual = inA == inB;
 }

Compare.cpp

The implementation is just as simple. All the comparison results are stored in output parameters.

Logic example
Compare two values

Compare

inA outGreater
inB outSmaller

outEqual

Modulation example
Sine LFO

SineLFO

inFrequency outValue
inAmplitude
inOffset
inPhase

This is the sine LFO node, it will output a sine wave at a given frequency and amplitude. This is a slightly more complicated node.

 void SineLFO(const float inFrequency,
 const float inAmplitude,
 const float inOffset, const float inPhase,
 float* outValue, float* phase)
 {
 *outValue = inOffset +
 inAmplitude * Math::Sin((*phase + inPhase) * M_TWO_PI);

 float new_phase = *phase + inFrequency * GraphSound::GetTimeStep();

 if (new_phase > 1.0f)
 new_phase -= 1.0f;

 *phase = new_phase;
 }

SineLFO.cpp

Let's look at how this is implemented. It's using two functions that are implemented in our engine, one for calculating the sine and one for getting the time step. If the game time is scaled (for example if we’re running the game
in slow motion), then the sound time-step will also be adjusted. However it's also possible to have sounds that are not affected by this.
Normally the graph execution is state less, that means that every time it runs, it does exactly the same, because it doesn't store any information, so it can't depend on previous runs. This node however is an example of
something that requires state information, and it's possible to do that on a per node basis. So here you can see that it uses a special “phase” parameter, which is stored separately for each instance of the node, and is passed in
by reference as a pointer. The state system allows us to store any arbitrary set of data, for example a full C++ object, or just a simple value like in this example.
The Wave node also uses this to store the information about the voices it has created.

 void SineLFO(const float inFrequency,
 const float inAmplitude,
 const float inOffset, const float inPhase,
 float* outValue, float* phase)
 {
 *outValue = inOffset +
 inAmplitude * Math::Sin((*phase + inPhase) * M_TWO_PI);

 float new_phase = *phase + inFrequency * GraphSound::GetTimeStep();

 if (new_phase > 1.0f)
 new_phase -= 1.0f;

 *phase = new_phase;
 }

SineLFO.cpp

Let's look at how this is implemented. It's using two functions that are implemented in our engine, one for calculating the sine and one for getting the time step. If the game time is scaled (for example if we’re running the game
in slow motion), then the sound time-step will also be adjusted. However it's also possible to have sounds that are not affected by this.
Normally the graph execution is state less, that means that every time it runs, it does exactly the same, because it doesn't store any information, so it can't depend on previous runs. This node however is an example of
something that requires state information, and it's possible to do that on a per node basis. So here you can see that it uses a special “phase” parameter, which is stored separately for each instance of the node, and is passed in
by reference as a pointer. The state system allows us to store any arbitrary set of data, for example a full C++ object, or just a simple value like in this example.
The Wave node also uses this to store the information about the voices it has created.

 void SineLFO(const float inFrequency,
 const float inAmplitude,
 const float inOffset, const float inPhase,
 float* outValue, float* phase)
 {
 *outValue = inOffset +
 inAmplitude * Math::Sin((*phase + inPhase) * M_TWO_PI);

 float new_phase = *phase + inFrequency * GraphSound::GetTimeStep();

 if (new_phase > 1.0f)
 new_phase -= 1.0f;

 *phase = new_phase;
 }

SineLFO.cpp

Let's look at how this is implemented. It's using two functions that are implemented in our engine, one for calculating the sine and one for getting the time step. If the game time is scaled (for example if we’re running the game
in slow motion), then the sound time-step will also be adjusted. However it's also possible to have sounds that are not affected by this.
Normally the graph execution is state less, that means that every time it runs, it does exactly the same, because it doesn't store any information, so it can't depend on previous runs. This node however is an example of
something that requires state information, and it's possible to do that on a per node basis. So here you can see that it uses a special “phase” parameter, which is stored separately for each instance of the node, and is passed in
by reference as a pointer. The state system allows us to store any arbitrary set of data, for example a full C++ object, or just a simple value like in this example.
The Wave node also uses this to store the information about the voices it has created.

 void SineLFO(const float inFrequency,
 const float inAmplitude,
 const float inOffset, const float inPhase,
 float* outValue, float* phase)
 {
 *outValue = inOffset +
 inAmplitude * Math::Sin((*phase + inPhase) * M_TWO_PI);

 float new_phase = *phase + inFrequency * GraphSound::GetTimeStep();

 if (new_phase > 1.0f)
 new_phase -= 1.0f;

 *phase = new_phase;
 }

SineLFO.cpp

Let's look at how this is implemented. It's using two functions that are implemented in our engine, one for calculating the sine and one for getting the time step. If the game time is scaled (for example if we’re running the game
in slow motion), then the sound time-step will also be adjusted. However it's also possible to have sounds that are not affected by this.
Normally the graph execution is state less, that means that every time it runs, it does exactly the same, because it doesn't store any information, so it can't depend on previous runs. This node however is an example of
something that requires state information, and it's possible to do that on a per node basis. So here you can see that it uses a special “phase” parameter, which is stored separately for each instance of the node, and is passed in
by reference as a pointer. The state system allows us to store any arbitrary set of data, for example a full C++ object, or just a simple value like in this example.
The Wave node also uses this to store the information about the voices it has created.

Modulation example
Sine LFO

SineLFO

inFrequency outValue
inAmplitude
inOffset
inPhase

Nodes built from
Graphs

Generate a random pitch within a
range of semitones

RandomRangedPitchRatio

inTrigger outPitchRatio
inMinSemitone
inMaxSemitone

Certain math or logic processing that starts to happen often in sounds can be abstracted into their own nodes, without having to know any programming. Here’s an example of a node, built from an actual graph.

As you can see here, it uses a combination of the random range node, to get a random semitone value, which it then converts to a pitch ratio.
It also uses the sample&hold node to make sure the value doesn’t change, as normally the random value would be recalculated at every update of the sound, i.e. once every 5.333ms.
Creating a node like this is basically as simple as selecting a group of nodes, then right-clicking and selecting “Collapse nodes”. The editor will do the rest.

As you can see here, it uses a combination of the random range node, to get a random semitone value, which it then converts to a pitch ratio.
It also uses the sample&hold node to make sure the value doesn’t change, as normally the random value would be recalculated at every update of the sound, i.e. once every 5.333ms.
Creating a node like this is basically as simple as selecting a group of nodes, then right-clicking and selecting “Collapse nodes”. The editor will do the rest.

As you can see here, it uses a combination of the random range node, to get a random semitone value, which it then converts to a pitch ratio.
It also uses the sample&hold node to make sure the value doesn’t change, as normally the random value would be recalculated at every update of the sound, i.e. once every 5.333ms.
Creating a node like this is basically as simple as selecting a group of nodes, then right-clicking and selecting “Collapse nodes”. The editor will do the rest.

As you can see here, it uses a combination of the random range node, to get a random semitone value, which it then converts to a pitch ratio.
It also uses the sample&hold node to make sure the value doesn’t change, as normally the random value would be recalculated at every update of the sound, i.e. once every 5.333ms.
Creating a node like this is basically as simple as selecting a group of nodes, then right-clicking and selecting “Collapse nodes”. The editor will do the rest.

Nodes built from
Graphs

Generate a random pitch within a
range of semitones

RandomRangedPitchRatio

inTrigger outPitchRatio
inMinSemitone
inMaxSemitone

When you notice repeated work…

When you notice repeated work…

…abstract it!

When you notice repeated work…

…abstract it!

When you notice repeated work…

…abstract it!

Inputs

Start
ChanceToPlay

Inputs

Start
ChanceToPlay

Delay

inEvent
inTime

outEvent
0.05

Inputs

Start
ChanceToPlay

Random

inRange100

Compare
inA outGreater
inB outSmaller

outEqual OR

Delay

inEvent
inTime

outEvent
0.05

Inputs

Start
ChanceToPlay

Random

inRange100

Compare
inA outGreater
inB outSmaller

outEqual OR

Delay

inEvent
inTime

outEvent
0.05

Wave

inAzimuth

inStart
inWave

AND

Inputs

Start
ChanceToPlay

Random

inRange100

Compare
inA outGreater
inB outSmaller

outEqual OR

Delay

inEvent
inTime

outEvent
0.05

Wave

inAzimuth

inStart
inWave

AND

Select 
Random 

Wave

Inputs

Start
ChanceToPlay

Random

inRange100

Compare
inA outGreater
inB outSmaller

outEqual OR

Delay

inEvent
inTime

outEvent
0.05

Wave

inAzimuth

inStart
inWave

AND

Random

inRange150

Ramp

inTrigger outValue
inStartValue
inTargetValue

0
Select 

Random 
Wave

Experimenting Should Be Safe and Fun

Experimenting Should Be Safe and Fun

• If your idea cannot fail, you’re not going to go to
uncharted territory.

Experimenting Should Be Safe and Fun

• If your idea cannot fail, you’re not going to go to
uncharted territory.

• We tried a lot

Experimenting Should Be Safe and Fun

• If your idea cannot fail, you’re not going to go to
uncharted territory.

• We tried a lot

• Some of it worked, some didn’t

Experimenting Should Be Safe and Fun

• If your idea cannot fail, you’re not going to go to
uncharted territory.

• We tried a lot

• Some of it worked, some didn’t

• Little or no code support - all in audio design

Examples

Fire Rate Variation

Fire Rate Variation

• Experiment: How to make battle sound more
interesting

Fire Rate Variation

• Experiment: How to make battle sound more
interesting

Fire Rate Variation

• Experiment: How to make battle sound more
interesting

Fire Rate Variation

• Experiment: How to make battle sound more
interesting

• Idea: Slight variation in fire rate

Fire Rate Variation

• Experiment: How to make battle sound more
interesting

• Idea: Slight variation in fire rate

What the Mind Hears, …

What the Mind Hears, …

What the Mind Hears, …

• Experiment: Birds should react when you fire gun

What the Mind Hears, …

• Experiment: Birds should react when you fire gun

• Birds exist as sound only

What the Mind Hears, …

• Experiment: Birds should react when you fire gun

• Birds exist as sound only

• Use sound-to-sound messaging system

What the Mind Hears, …

• Experiment: Birds should react when you fire gun

• Birds exist as sound only

• Use sound-to-sound messaging system

• Gun sounds notify bird sounds of shot

Bird Sound Logic

Not Shooting Play “Bird Loop”FALSE

GunFireState
Gun Sound Bird Sound

Bird Sound Logic

Shooting Play “Bird Loop”FALSE

GunFireState
Gun Sound Bird Sound

Bird Sound Logic

Shooting Play “Bird Loop”TRUE

GunFireState
Gun Sound Bird Sound

set

Bird Sound Logic

Shooting Play “Bird Loop”TRUE

GunFireState
Gun Sound Bird Sound

set get

Play 
“Birds Flying Off”

!
Wait 30 seconds

Bird Sound Logic

Shooting TRUE

GunFireState
Gun Sound Bird Sound

set get

Play 
“Birds Flying Off”

!
Wait 30 seconds

Bird Sound Logic

Not Shooting TRUE

GunFireState
Gun Sound Bird Sound

set get

Play 
“Birds Flying Off”

!
Wait 30 seconds

Bird Sound Logic

Not Shooting

GunFireState
Gun Sound Bird Sound

set getFALSE

Play “Bird Loop”

Bird Sound Logic

Not Shooting

GunFireState
Gun Sound Bird Sound

set getFALSE

Play “Bird Loop”

Bird Sound Logic

Not Shooting

GunFireState
Gun Sound Bird Sound

set getFALSE

Any sound can send a message which can
be received by any other sound

Material Dependent Environmental
Reactions (MADDER)

Material Dependent Environmental
Reactions (MADDER)

• Inspiration:  
Guns have this explosive force in the world 
when they’re fired

Material Dependent Environmental
Reactions (MADDER)

• Inspiration:  
Guns have this explosive force in the world 
when they’re fired

• Things that are near start to rattle

See http://www.youtube.com/watch?v=nMkiDguYtGw

See http://www.youtube.com/watch?v=nMkiDguYtGw

See http://www.youtube.com/watch?v=nMkiDguYtGw

MADDER

MADDER

• Inputs required:

MADDER

• Inputs required:

• Distance to closest surface

MADDER

• Inputs required:

• Distance to closest surface

• Direction of closest surface

MADDER

• Inputs required:

• Distance to closest surface

• Direction of closest surface

• Material of closest surface

MADDER raycast

Listener

MADDER raycast

• Sweeping raycast
around listener

Listener

MADDER raycast

• Sweeping raycast
around listener

Listener

MADDER raycast

• Sweeping raycast
around listener

• After one revolution,
closest hit point is used Listener

MADDER raycast

• Sweeping raycast
around listener

• After one revolution,
closest hit point is used

• Distance, angle and
material is passed to
sound

Distance

}Angle

Material

Listener

Inputs

on_start
inIsFirstPerson
inWallDistance

inWallAngle
inWallMaterial

Inputs

on_start
inIsFirstPerson
inWallDistance

inWallAngle
inWallMaterial

FirstPerson

inStartAND

Inputs

on_start
inIsFirstPerson
inWallDistance

inWallAngle
inWallMaterial

FirstPerson

inStartAND

ThirdPerson

inStartNOT

Inputs

on_start
inIsFirstPerson
inWallDistance

inWallAngle
inWallMaterial

FirstPerson

inStartAND

ThirdPerson

inStartNOT

MADDER

inWallDistance
PitchModifier

inWallAngle
inWallMaterial

Start
SpeedOfSound

MaterialSamples
IsSilencedGun
IsBigGun

330
1.0

False
False

Inputs

on_start
inIsFirstPerson
inWallDistance

inWallAngle
inWallMaterial

FirstPerson

inStartAND

ThirdPerson

inStartNOT

MADDER

inWallDistance
PitchModifier

inWallAngle
inWallMaterial

Start
SpeedOfSound

MaterialSamples
IsSilencedGun
IsBigGun

330
1.0

False
False

Inputs

on_start
inIsFirstPerson
inWallDistance

inWallAngle
inWallMaterial

FirstPerson

inStartAND

ThirdPerson

inStartNOT

MADDER 
Content

Package

MADDER

inWallDistance
PitchModifier

inWallAngle
inWallMaterial

Start
SpeedOfSound

MaterialSamples
IsSilencedGun
IsBigGun

330
1.0

False
False

Inputs

Start
SpeedOfSound

PitchModifier
FiringRate

inWallDistance
inWallAngle

inWallMaterial
MaterialSamples

IsSilencedGun
IsBigGun

Inputs

Start
SpeedOfSound

PitchModifier
FiringRate

inWallDistance
inWallAngle

inWallMaterial
MaterialSamples

IsSilencedGun
IsBigGun

Delay

Unit

Inputs

Start
SpeedOfSound

PitchModifier
FiringRate

inWallDistance
inWallAngle

inWallMaterial
MaterialSamples

IsSilencedGun
IsBigGun

Voice

Selector

Delay

Unit

4x

Inputs

Start
SpeedOfSound

PitchModifier
FiringRate

inWallDistance
inWallAngle

inWallMaterial
MaterialSamples

IsSilencedGun
IsBigGun

Voice

Selector

Delay

Unit

4x

Wave

inAzimuth
inPitchRatio

inDryGain
inWetGain

inStart
inWave

Inputs

Start
SpeedOfSound

PitchModifier
FiringRate

inWallDistance
inWallAngle

inWallMaterial
MaterialSamples

IsSilencedGun
IsBigGun

Voice

Selector

Delay

Unit

4x

Wave

inAzimuth
inPitchRatio

inDryGain
inWetGain

inStart
inWave

Inputs

Start
SpeedOfSound

PitchModifier
FiringRate

inWallDistance
inWallAngle

inWallMaterial
MaterialSamples

IsSilencedGun
IsBigGun

Voice

Selector

Delay

Unit

4x

Wave

inAzimuth
inPitchRatio

inDryGain
inWetGain

inStart
inWave

Inputs

Start
SpeedOfSound

PitchModifier
FiringRate

inWallDistance
inWallAngle

inWallMaterial
MaterialSamples

IsSilencedGun
IsBigGun

Voice

Selector

Delay

Unit

4x

Wave

inAzimuth
inPitchRatio

inDryGain
inWetGain

inStart
inWave

SelectSample

inMaterial outWave
inMaterialSamples

Inputs

Start
SpeedOfSound

PitchModifier
FiringRate

inWallDistance
inWallAngle

inWallMaterial
MaterialSamples

IsSilencedGun
IsBigGun

Voice

Selector

Delay

Unit

4x

Wave

inAzimuth
inPitchRatio

inDryGain
inWetGain

inStart
inWave

SelectSample

inMaterial outWave
inMaterialSamples

Inputs

Start
SpeedOfSound

PitchModifier
FiringRate

inWallDistance
inWallAngle

inWallMaterial
MaterialSamples

IsSilencedGun
IsBigGun

Falloff

Unit

Voice

Selector

Delay

Unit

Video showing MADDER effect for 4 different materials

Video showing MADDER effect for 4 different materials

MADDER Prototype

Video showing initial MADDER prototype with 4 different materials in scene.

MADDER Prototype

Video showing initial MADDER prototype with 4 different materials in scene.

MADDER Four-angle raycast

-45° +45°

-135° +135°

MADDER Four-angle raycast

• Divide in four quadrants 
around listener

-45° +45°

-135° +135°

MADDER Four-angle raycast

• Divide in four quadrants 
around listener

• One sweeping raycast 
in each quadrant

-45° +45°

-135° +135°

MADDER Four-angle raycast

• Divide in four quadrants 
around listener

• One sweeping raycast 
in each quadrant

• Closest hit point in 
each quadrant is taken

Inputs

inWallDistanceFront
inWallAngleFront

inWallMaterialFront
inWallDistanceRight

inWallAngleRight
inWallMaterialRight

inWallDistanceBack
inWallAngleBack

inWallMaterialBack
inWallDistanceLeft

inWallAngleLeft
inWallMaterialLeft

Inputs

inWallDistanceFront
inWallAngleFront

inWallMaterialFront
inWallDistanceRight

inWallAngleRight
inWallMaterialRight

inWallDistanceBack
inWallAngleBack

inWallMaterialBack
inWallDistanceLeft

inWallAngleLeft
inWallMaterialLeft

MADDER
inWallDistance
inWallAngle
inWallMaterial

Inputs

inWallDistanceFront
inWallAngleFront

inWallMaterialFront
inWallDistanceRight

inWallAngleRight
inWallMaterialRight

inWallDistanceBack
inWallAngleBack

inWallMaterialBack
inWallDistanceLeft

inWallAngleLeft
inWallMaterialLeft

MADDER
inWallDistance
inWallAngle
inWallMaterial

MADDER
inWallDistance
inWallAngle
inWallMaterial

Inputs

inWallDistanceFront
inWallAngleFront

inWallMaterialFront
inWallDistanceRight

inWallAngleRight
inWallMaterialRight

inWallDistanceBack
inWallAngleBack

inWallMaterialBack
inWallDistanceLeft

inWallAngleLeft
inWallMaterialLeft

MADDER
inWallDistance
inWallAngle
inWallMaterial

MADDER
inWallDistance
inWallAngle
inWallMaterial

MADDER
inWallDistance
inWallAngle
inWallMaterial

Inputs

inWallDistanceFront
inWallAngleFront

inWallMaterialFront
inWallDistanceRight

inWallAngleRight
inWallMaterialRight

inWallDistanceBack
inWallAngleBack

inWallMaterialBack
inWallDistanceLeft

inWallAngleLeft
inWallMaterialLeft

MADDER
inWallDistance
inWallAngle
inWallMaterial

MADDER
inWallDistance
inWallAngle
inWallMaterial

MADDER
inWallDistance
inWallAngle
inWallMaterial

MADDER
inWallDistance
inWallAngle
inWallMaterial

Four-angle MADDER

Video showing final 4-angle MADDER with 4 materials placed in the scene

Four-angle MADDER

Video showing final 4-angle MADDER with 4 materials placed in the scene

MADDER video (30 seconds)

MADDER off

Capture from final game with MADDER disabled

MADDER video (30 seconds)

MADDER off

Capture from final game with MADDER disabled

MADDER on

Capture from final game with MADDER enabled

MADDER on

Capture from final game with MADDER enabled

Creative Workflow

Creative Workflow

IDEA Coder GAMESound
Designer DONE

Creative Workflow

IDEA

Coder

GAMESound
Designer DONE

Gun Tails

Gun Tails

• Experiment with existing data

Gun Tails

• Experiment with existing data

• Wall raycast

Gun Tails

• Experiment with existing data

• Wall raycast

• Inside/Outside

Gun Tails

• Experiment with existing data

• Wall raycast

• Inside/Outside

• Rounds Fired

Gun Tails

• Experiment with existing data

• Wall raycast

• Inside/Outside

• Rounds Fired

Gun Tails

• Experiment with existing data

• Wall raycast

• Inside/Outside

• Rounds Fired

Gun Tails

• Experiment with existing data

• Wall raycast

• Inside/Outside

• Rounds Fired

How to Debug?

What kind of debugging support did we have? Obviously a sound designer is creating much more complex logic now, and that means bugs will creep in. We need to be able to find problems such as incorrect behaviour quickly.

Manually Placed Debug Probes

SineLFO

inFrequency outValue
inAmplitude
inOffset
inPhase

0.5
0.5

1
0.0

Anton: These are placed by designers into their sounds, to query individual outputs of nodes. The values are shown as a curve on screen, useful for debugging a single value and how it changes over time. Not very useful for
quickly changing things, such as boolean events. Since the sound graphs execute multiple times per game frame, but the debug visualisation is only drawn at the game frame rate, a quick change can be missed.
In the final version of the game, these nodes are completely ignored. !
Screenshot!

Manually Placed Debug Probes

SineLFO

inFrequency outValue
inAmplitude
inOffset
inPhase

DebugProbe

inDebugName
inDebugValue

sine
0.5
0.5

1
0.0

Anton: These are placed by designers into their sounds, to query individual outputs of nodes. The values are shown as a curve on screen, useful for debugging a single value and how it changes over time. Not very useful for
quickly changing things, such as boolean events. Since the sound graphs execute multiple times per game frame, but the debug visualisation is only drawn at the game frame rate, a quick change can be missed.
In the final version of the game, these nodes are completely ignored. !
Screenshot!

Manually Placed Debug Probes

• Just connect any output to visualize it

SineLFO

inFrequency outValue
inAmplitude
inOffset
inPhase

DebugProbe

inDebugName
inDebugValue

sine
0.5
0.5

1
0.0

Anton: These are placed by designers into their sounds, to query individual outputs of nodes. The values are shown as a curve on screen, useful for debugging a single value and how it changes over time. Not very useful for
quickly changing things, such as boolean events. Since the sound graphs execute multiple times per game frame, but the debug visualisation is only drawn at the game frame rate, a quick change can be missed.
In the final version of the game, these nodes are completely ignored. !
Screenshot!

Manually Placed Debug Probes

• Just connect any output to visualize it
• Shows debug value on game screen

SineLFO

inFrequency outValue
inAmplitude
inOffset
inPhase

DebugProbe

inDebugName
inDebugValue

sine
0.5
0.5

1
0.0

Anton: These are placed by designers into their sounds, to query individual outputs of nodes. The values are shown as a curve on screen, useful for debugging a single value and how it changes over time. Not very useful for
quickly changing things, such as boolean events. Since the sound graphs execute multiple times per game frame, but the debug visualisation is only drawn at the game frame rate, a quick change can be missed.
In the final version of the game, these nodes are completely ignored. !
Screenshot!

Manually Placed Debug Probes

Can miss quick changes because game
frame rate is lower than sound update rate!

Manually Placed Debug Probes

Automatically Embedded Debug Probes

 EvaluateCurve(CurveDataPointer, inDistanceToListener,
 &outYValue);
 DEBUG_PROBE(0, (void*)&outYValue)

Andreas: Each graph is generated in two versions, one without debugging code (for final game) and one with automatically generated debug probe code for every node. We emit these DEBUG_PROBE macros into the graph
functions, so we can easily disable the debug support at compile time.
When executing a graph with debugging enabled, the code in the macro collects the values of the inputs and outputs of every node (and of the graph itself) and passes them to the engine, which stores the information. !

Automatically Embedded Debug Probes

 EvaluateCurve(CurveDataPointer, inDistanceToListener,
 &outYValue);
 DEBUG_PROBE(0, (void*)&outYValue)

Andreas: Each graph is generated in two versions, one without debugging code (for final game) and one with automatically generated debug probe code for every node. We emit these DEBUG_PROBE macros into the graph
functions, so we can easily disable the debug support at compile time.
When executing a graph with debugging enabled, the code in the macro collects the values of the inputs and outputs of every node (and of the graph itself) and passes them to the engine, which stores the information. !

Automatically Embedded Debug Probes

 EvaluateCurve(CurveDataPointer, inDistanceToListener,
 &outYValue);
 DEBUG_PROBE(0, (void*)&outYValue)

• All values are recorded, nothing is lost

Andreas: Each graph is generated in two versions, one without debugging code (for final game) and one with automatically generated debug probe code for every node. We emit these DEBUG_PROBE macros into the graph
functions, so we can easily disable the debug support at compile time.
When executing a graph with debugging enabled, the code in the macro collects the values of the inputs and outputs of every node (and of the graph itself) and passes them to the engine, which stores the information. !

Automatically Embedded Debug Probes

 EvaluateCurve(CurveDataPointer, inDistanceToListener,
 &outYValue);
 DEBUG_PROBE(0, (void*)&outYValue)

• All values are recorded, nothing is lost
• Simple in-game debugger to show data

Andreas: Each graph is generated in two versions, one without debugging code (for final game) and one with automatically generated debug probe code for every node. We emit these DEBUG_PROBE macros into the graph
functions, so we can easily disable the debug support at compile time.
When executing a graph with debugging enabled, the code in the macro collects the values of the inputs and outputs of every node (and of the graph itself) and passes them to the engine, which stores the information. !

Automatically Embedded Debug Probes

 EvaluateCurve(CurveDataPointer, inDistanceToListener,
 &outYValue);
 DEBUG_PROBE(0, (void*)&outYValue)

• All values are recorded, nothing is lost
• Simple in-game debugger to show data
• Scrub through recording

Andreas: Each graph is generated in two versions, one without debugging code (for final game) and one with automatically generated debug probe code for every node. We emit these DEBUG_PROBE macros into the graph
functions, so we can easily disable the debug support at compile time.
When executing a graph with debugging enabled, the code in the macro collects the values of the inputs and outputs of every node (and of the graph itself) and passes them to the engine, which stores the information. !

Post Mortem

So what when wrong and what went right?

Timeline

Andreas: We started working on PS4 technology very early, many parts of the PS4 hardware were still undefined when we started. At one point we even expected the hardware to do more than decoding, i.e. we assumed that
there might be a way of executing our own DSP code on it. We thought we might have to write custom DSP code for that chip. At that time there were no middleware vendors disclosed yet, so we just couldn’t really talk to them
about any of this.
We therefore had to play it safe, so we designed the new sound system around an abstract synth. We’ve created an initial prototype implementation, for use in our PC build. Later on we’ve switched to PS4 hardware.
Anton: become used to being alpha tester for hardware as a designer. became good audio tester. Other designers hardly noticed the transition from PC to PS4 hardware, as the synth was the same on both.

Timeline

February 2011 Pre-production begins, hardly any PS4 hardware details yet

Andreas: We started working on PS4 technology very early, many parts of the PS4 hardware were still undefined when we started. At one point we even expected the hardware to do more than decoding, i.e. we assumed that
there might be a way of executing our own DSP code on it. We thought we might have to write custom DSP code for that chip. At that time there were no middleware vendors disclosed yet, so we just couldn’t really talk to them
about any of this.
We therefore had to play it safe, so we designed the new sound system around an abstract synth. We’ve created an initial prototype implementation, for use in our PC build. Later on we’ve switched to PS4 hardware.
Anton: become used to being alpha tester for hardware as a designer. became good audio tester. Other designers hardly noticed the transition from PC to PS4 hardware, as the synth was the same on both.

Timeline

February 2011 Pre-production begins, hardly any PS4 hardware details yet
November 2011 PC prototype of sound engine

Andreas: We started working on PS4 technology very early, many parts of the PS4 hardware were still undefined when we started. At one point we even expected the hardware to do more than decoding, i.e. we assumed that
there might be a way of executing our own DSP code on it. We thought we might have to write custom DSP code for that chip. At that time there were no middleware vendors disclosed yet, so we just couldn’t really talk to them
about any of this.
We therefore had to play it safe, so we designed the new sound system around an abstract synth. We’ve created an initial prototype implementation, for use in our PC build. Later on we’ve switched to PS4 hardware.
Anton: become used to being alpha tester for hardware as a designer. became good audio tester. Other designers hardly noticed the transition from PC to PS4 hardware, as the synth was the same on both.

Timeline

February 2011 Pre-production begins, hardly any PS4 hardware details yet
November 2011 PC prototype of sound engine

August 2012 Moved over to PS4 hardware

Andreas: We started working on PS4 technology very early, many parts of the PS4 hardware were still undefined when we started. At one point we even expected the hardware to do more than decoding, i.e. we assumed that
there might be a way of executing our own DSP code on it. We thought we might have to write custom DSP code for that chip. At that time there were no middleware vendors disclosed yet, so we just couldn’t really talk to them
about any of this.
We therefore had to play it safe, so we designed the new sound system around an abstract synth. We’ve created an initial prototype implementation, for use in our PC build. Later on we’ve switched to PS4 hardware.
Anton: become used to being alpha tester for hardware as a designer. became good audio tester. Other designers hardly noticed the transition from PC to PS4 hardware, as the synth was the same on both.

Timeline

February 2011 Pre-production begins, hardly any PS4 hardware details yet
November 2011 PC prototype of sound engine

August 2012 Moved over to PS4 hardware
February 2013 PS4 announcement demo (still using software codecs)

Andreas: We started working on PS4 technology very early, many parts of the PS4 hardware were still undefined when we started. At one point we even expected the hardware to do more than decoding, i.e. we assumed that
there might be a way of executing our own DSP code on it. We thought we might have to write custom DSP code for that chip. At that time there were no middleware vendors disclosed yet, so we just couldn’t really talk to them
about any of this.
We therefore had to play it safe, so we designed the new sound system around an abstract synth. We’ve created an initial prototype implementation, for use in our PC build. Later on we’ve switched to PS4 hardware.
Anton: become used to being alpha tester for hardware as a designer. became good audio tester. Other designers hardly noticed the transition from PC to PS4 hardware, as the synth was the same on both.

Timeline

February 2011 Pre-production begins, hardly any PS4 hardware details yet
November 2011 PC prototype of sound engine

August 2012 Moved over to PS4 hardware
February 2013 PS4 announcement demo (still using software codecs)

June 2013 E3 demo (now using ACP hardware decoding)

Andreas: We started working on PS4 technology very early, many parts of the PS4 hardware were still undefined when we started. At one point we even expected the hardware to do more than decoding, i.e. we assumed that
there might be a way of executing our own DSP code on it. We thought we might have to write custom DSP code for that chip. At that time there were no middleware vendors disclosed yet, so we just couldn’t really talk to them
about any of this.
We therefore had to play it safe, so we designed the new sound system around an abstract synth. We’ve created an initial prototype implementation, for use in our PC build. Later on we’ve switched to PS4 hardware.
Anton: become used to being alpha tester for hardware as a designer. became good audio tester. Other designers hardly noticed the transition from PC to PS4 hardware, as the synth was the same on both.

Timeline

February 2011 Pre-production begins, hardly any PS4 hardware details yet
November 2011 PC prototype of sound engine

August 2012 Moved over to PS4 hardware
February 2013 PS4 announcement demo (still using software codecs)

June 2013 E3 demo (now using ACP hardware decoding)
November 2013 Shipped as launch title

Andreas: We started working on PS4 technology very early, many parts of the PS4 hardware were still undefined when we started. At one point we even expected the hardware to do more than decoding, i.e. we assumed that
there might be a way of executing our own DSP code on it. We thought we might have to write custom DSP code for that chip. At that time there were no middleware vendors disclosed yet, so we just couldn’t really talk to them
about any of this.
We therefore had to play it safe, so we designed the new sound system around an abstract synth. We’ve created an initial prototype implementation, for use in our PC build. Later on we’ve switched to PS4 hardware.
Anton: become used to being alpha tester for hardware as a designer. became good audio tester. Other designers hardly noticed the transition from PC to PS4 hardware, as the synth was the same on both.

Timeline

February 2011 Pre-production begins, hardly any PS4 hardware details yet
November 2011 PC prototype of sound engine

August 2012 Moved over to PS4 hardware
February 2013 PS4 announcement demo (still using software codecs)

June 2013 E3 demo (now using ACP hardware decoding)
November 2013 Shipped as launch title

New system was up and running within 6 months!

Andreas: We started working on PS4 technology very early, many parts of the PS4 hardware were still undefined when we started. At one point we even expected the hardware to do more than decoding, i.e. we assumed that
there might be a way of executing our own DSP code on it. We thought we might have to write custom DSP code for that chip. At that time there were no middleware vendors disclosed yet, so we just couldn’t really talk to them
about any of this.
We therefore had to play it safe, so we designed the new sound system around an abstract synth. We’ve created an initial prototype implementation, for use in our PC build. Later on we’ve switched to PS4 hardware.
Anton: become used to being alpha tester for hardware as a designer. became good audio tester. Other designers hardly noticed the transition from PC to PS4 hardware, as the synth was the same on both.

“You’re making sound designers do
programming work, that’ll be a disaster!

The game will crash all the time!”

This didn't really happen. We had a few buggy nodes, but in general, things worked out fine. What we did is to make sure that if new nodes are peer-reviewed like any other code, especially if it’s written by a non-programmer.
Also since nodes are so simple and limited in their scope, it’s hard to make something that truly breaks the game.

“This is an unproven idea, why don’t we
just use some middleware solution?”

There were doubts that we can create new tech and a toolset with a user friendly workflow in time. The safer thing would’ve been to license a middleware solution, but at the time we had to make this decision, no 3rd parties
were disclosed about PS4 yet, and we couldn’t be sure if they will properly support the PS4 audio hardware.
Also we were keen on having a solution that’s integrated with our normal asset pipeline, which allowed us to share the tech built for audio with other disciplines.
Sound designers using the same workflow as artists and game designers is a benefit that middleware can't give us. New nodes created by e.g. game programmers are immediately useful for sound designers, and vice versa.
All of these reasons led us to push forward with our own tech, to make something that really fits the game and our way of working. !
Anton: Also we wouldn’t have been able to do the kind of deep tool integration that we have now.

Used by other Disciplines

The fact that the graph system was available in the editor that the whole studio is using meant that it was directly available to all other disciplines.

Used by other Disciplines

• Graph system became popular

The fact that the graph system was available in the editor that the whole studio is using meant that it was directly available to all other disciplines.

Used by other Disciplines

• Graph system became popular

• Used for procedural rigging

The fact that the graph system was available in the editor that the whole studio is using meant that it was directly available to all other disciplines.

Used by other Disciplines

• Graph system became popular

• Used for procedural rigging

• Used for gameplay behavior

The fact that the graph system was available in the editor that the whole studio is using meant that it was directly available to all other disciplines.

Used by other Disciplines

• Graph system became popular

• Used for procedural rigging

• Used for gameplay behavior

• More nodes were added

The fact that the graph system was available in the editor that the whole studio is using meant that it was directly available to all other disciplines.

Used by other Disciplines

• Graph system became popular

• Used for procedural rigging

• Used for gameplay behavior

• More nodes were added

• Bugs were fixed quicker

The fact that the graph system was available in the editor that the whole studio is using meant that it was directly available to all other disciplines.

Compression Codecs

A little bit more information to show were we came from:
On PS3 most sounds were ADPCM, a few were PCM, only streaming sounds used MP3 with various bit rates. We had about 20 MB budgeted for in-memory samples.
This generation we ended up using a combination of PCM and MP3 for in-memory sounds, with a total of about 300MB of memory used at run-time, that's roughly 16x as much as on PS3, but still the same percentage of the whole
memory (roughly 4%). We didn't use any ADPCM samples anymore (good riddance). The split between PCM and MP3 is roughly 50:50. We used PCM for anything that needs to loop or seek with sample accuracy, and MP3 for
larger sounds that don’t require precise timing, such as the tails of guns, for example. Obviously we relied on the audio coprocessor of the PS4 to decode our MP3 data.
We’ve used ATRAC9 for surround streams, but those are not in-memory.

Compression Codecs
KZ3 (PS3) samples

PCM

ADPCM

MP3

0 2500 5000 7500 10000

~20 MB for in-memory samples

A little bit more information to show were we came from:
On PS3 most sounds were ADPCM, a few were PCM, only streaming sounds used MP3 with various bit rates. We had about 20 MB budgeted for in-memory samples.
This generation we ended up using a combination of PCM and MP3 for in-memory sounds, with a total of about 300MB of memory used at run-time, that's roughly 16x as much as on PS3, but still the same percentage of the whole
memory (roughly 4%). We didn't use any ADPCM samples anymore (good riddance). The split between PCM and MP3 is roughly 50:50. We used PCM for anything that needs to loop or seek with sample accuracy, and MP3 for
larger sounds that don’t require precise timing, such as the tails of guns, for example. Obviously we relied on the audio coprocessor of the PS4 to decode our MP3 data.
We’ve used ATRAC9 for surround streams, but those are not in-memory.

Compression Codecs
KZ3 (PS3) samples

PCM

ADPCM

MP3

0 2500 5000 7500 10000

KZSF (PS4) samples

PCM

ADPCM

MP3

0 2500 5000 7500 10000

~20 MB for in-memory samples ~300 MB for in-memory samples

A little bit more information to show were we came from:
On PS3 most sounds were ADPCM, a few were PCM, only streaming sounds used MP3 with various bit rates. We had about 20 MB budgeted for in-memory samples.
This generation we ended up using a combination of PCM and MP3 for in-memory sounds, with a total of about 300MB of memory used at run-time, that's roughly 16x as much as on PS3, but still the same percentage of the whole
memory (roughly 4%). We didn't use any ADPCM samples anymore (good riddance). The split between PCM and MP3 is roughly 50:50. We used PCM for anything that needs to loop or seek with sample accuracy, and MP3 for
larger sounds that don’t require precise timing, such as the tails of guns, for example. Obviously we relied on the audio coprocessor of the PS4 to decode our MP3 data.
We’ve used ATRAC9 for surround streams, but those are not in-memory.

Compression Codecs
KZ3 (PS3) samples

PCM

ADPCM

MP3

0 2500 5000 7500 10000

KZSF (PS4) samples

PCM

ADPCM

MP3

0 2500 5000 7500 10000

Need low latency

~20 MB for in-memory samples ~300 MB for in-memory samples

A little bit more information to show were we came from:
On PS3 most sounds were ADPCM, a few were PCM, only streaming sounds used MP3 with various bit rates. We had about 20 MB budgeted for in-memory samples.
This generation we ended up using a combination of PCM and MP3 for in-memory sounds, with a total of about 300MB of memory used at run-time, that's roughly 16x as much as on PS3, but still the same percentage of the whole
memory (roughly 4%). We didn't use any ADPCM samples anymore (good riddance). The split between PCM and MP3 is roughly 50:50. We used PCM for anything that needs to loop or seek with sample accuracy, and MP3 for
larger sounds that don’t require precise timing, such as the tails of guns, for example. Obviously we relied on the audio coprocessor of the PS4 to decode our MP3 data.
We’ve used ATRAC9 for surround streams, but those are not in-memory.

Compression Codecs
KZ3 (PS3) samples

PCM

ADPCM

MP3

0 2500 5000 7500 10000

KZSF (PS4) samples

PCM

ADPCM

MP3

0 2500 5000 7500 10000

Large, don’t need precise timing

Need low latency

~20 MB for in-memory samples ~300 MB for in-memory samples

A little bit more information to show were we came from:
On PS3 most sounds were ADPCM, a few were PCM, only streaming sounds used MP3 with various bit rates. We had about 20 MB budgeted for in-memory samples.
This generation we ended up using a combination of PCM and MP3 for in-memory sounds, with a total of about 300MB of memory used at run-time, that's roughly 16x as much as on PS3, but still the same percentage of the whole
memory (roughly 4%). We didn't use any ADPCM samples anymore (good riddance). The split between PCM and MP3 is roughly 50:50. We used PCM for anything that needs to loop or seek with sample accuracy, and MP3 for
larger sounds that don’t require precise timing, such as the tails of guns, for example. Obviously we relied on the audio coprocessor of the PS4 to decode our MP3 data.
We’ve used ATRAC9 for surround streams, but those are not in-memory.

Compression Codecs
KZ3 (PS3) samples

PCM

ADPCM

MP3

0 2500 5000 7500 10000

KZSF (PS4) samples

PCM

ADPCM

MP3

0 2500 5000 7500 10000

We’ve completely stopped using ADPCM (VAG) !

Large, don’t need precise timing

Need low latency

~20 MB for in-memory samples ~300 MB for in-memory samples

A little bit more information to show were we came from:
On PS3 most sounds were ADPCM, a few were PCM, only streaming sounds used MP3 with various bit rates. We had about 20 MB budgeted for in-memory samples.
This generation we ended up using a combination of PCM and MP3 for in-memory sounds, with a total of about 300MB of memory used at run-time, that's roughly 16x as much as on PS3, but still the same percentage of the whole
memory (roughly 4%). We didn't use any ADPCM samples anymore (good riddance). The split between PCM and MP3 is roughly 50:50. We used PCM for anything that needs to loop or seek with sample accuracy, and MP3 for
larger sounds that don’t require precise timing, such as the tails of guns, for example. Obviously we relied on the audio coprocessor of the PS4 to decode our MP3 data.
We’ve used ATRAC9 for surround streams, but those are not in-memory.

Sample Rates on PS3

We had a wide variety of sample rates on the PS3, because it was the main parameter we used to optimize memory usage of sounds. This led to some very low quality samples in the game.
On the PS4 we only used samples with 48kHz rate. The main way to optimize was to switch them to MP3 encoding and adjust the bit rate.

Sample Rates on PS3

0

175

350

525

700

4000 7000 11000 12500 15500 17000 19500 22050 25000 28000 31000 33075 36000 39000 48000

We had a wide variety of sample rates on the PS3, because it was the main parameter we used to optimize memory usage of sounds. This led to some very low quality samples in the game.
On the PS4 we only used samples with 48kHz rate. The main way to optimize was to switch them to MP3 encoding and adjust the bit rate.

Sample Rates on PS3

0

175

350

525

700

4000 7000 11000 12500 15500 17000 19500 22050 25000 28000 31000 33075 36000 39000 48000

Using sample rate to optimize memory usage! 😩

We had a wide variety of sample rates on the PS3, because it was the main parameter we used to optimize memory usage of sounds. This led to some very low quality samples in the game.
On the PS4 we only used samples with 48kHz rate. The main way to optimize was to switch them to MP3 encoding and adjust the bit rate.

Sample Rates on PS3

0

175

350

525

700

4000 7000 11000 12500 15500 17000 19500 22050 25000 28000 31000 33075 36000 39000 48000

On PS4 we use 48 kHz exclusively!

Using sample rate to optimize memory usage! 😩

We had a wide variety of sample rates on the PS3, because it was the main parameter we used to optimize memory usage of sounds. This led to some very low quality samples in the game.
On the PS4 we only used samples with 48kHz rate. The main way to optimize was to switch them to MP3 encoding and adjust the bit rate.

The Future…

Andreas: Were do we go from here?
We’re planning to extend and improve this system in the future, and use it for more purposes. E.g. changing the code generator to allow the creation of compute shaders. Also we'll add more elaborate debugging support, and
lots of new nodes of course. We’ll have more detailed profiling support, to measure the execution time of the graph for each node, to allow us to identify bottleneck nodes that need to be optimised.
We’re also thinking about different ways to use this system, to create samples on the fly for variations. In this scenario we would add nodes to allow waveforms to be output into buffers, which can then be played at a later point in
time.

The Future…

• Extend and improve

Andreas: Were do we go from here?
We’re planning to extend and improve this system in the future, and use it for more purposes. E.g. changing the code generator to allow the creation of compute shaders. Also we'll add more elaborate debugging support, and
lots of new nodes of course. We’ll have more detailed profiling support, to measure the execution time of the graph for each node, to allow us to identify bottleneck nodes that need to be optimised.
We’re also thinking about different ways to use this system, to create samples on the fly for variations. In this scenario we would add nodes to allow waveforms to be output into buffers, which can then be played at a later point in
time.

The Future…

• Extend and improve

• Create compute shaders from graphs

Andreas: Were do we go from here?
We’re planning to extend and improve this system in the future, and use it for more purposes. E.g. changing the code generator to allow the creation of compute shaders. Also we'll add more elaborate debugging support, and
lots of new nodes of course. We’ll have more detailed profiling support, to measure the execution time of the graph for each node, to allow us to identify bottleneck nodes that need to be optimised.
We’re also thinking about different ways to use this system, to create samples on the fly for variations. In this scenario we would add nodes to allow waveforms to be output into buffers, which can then be played at a later point in
time.

The Future…

• Extend and improve

• Create compute shaders from graphs

• More elaborate debugging support

Andreas: Were do we go from here?
We’re planning to extend and improve this system in the future, and use it for more purposes. E.g. changing the code generator to allow the creation of compute shaders. Also we'll add more elaborate debugging support, and
lots of new nodes of course. We’ll have more detailed profiling support, to measure the execution time of the graph for each node, to allow us to identify bottleneck nodes that need to be optimised.
We’re also thinking about different ways to use this system, to create samples on the fly for variations. In this scenario we would add nodes to allow waveforms to be output into buffers, which can then be played at a later point in
time.

The Future…

• Extend and improve

• Create compute shaders from graphs

• More elaborate debugging support

• Detailed profiling

Andreas: Were do we go from here?
We’re planning to extend and improve this system in the future, and use it for more purposes. E.g. changing the code generator to allow the creation of compute shaders. Also we'll add more elaborate debugging support, and
lots of new nodes of course. We’ll have more detailed profiling support, to measure the execution time of the graph for each node, to allow us to identify bottleneck nodes that need to be optimised.
We’re also thinking about different ways to use this system, to create samples on the fly for variations. In this scenario we would add nodes to allow waveforms to be output into buffers, which can then be played at a later point in
time.

The Future…

• Extend and improve

• Create compute shaders from graphs

• More elaborate debugging support

• Detailed profiling

• Experiment with sample-rate synthesis

Andreas: Were do we go from here?
We’re planning to extend and improve this system in the future, and use it for more purposes. E.g. changing the code generator to allow the creation of compute shaders. Also we'll add more elaborate debugging support, and
lots of new nodes of course. We’ll have more detailed profiling support, to measure the execution time of the graph for each node, to allow us to identify bottleneck nodes that need to be optimised.
We’re also thinking about different ways to use this system, to create samples on the fly for variations. In this scenario we would add nodes to allow waveforms to be output into buffers, which can then be played at a later point in
time.

The Future…

Andreas: Were do we go from here?
We’re planning to extend and improve this system in the future, and use it for more purposes. E.g. changing the code generator to allow the creation of compute shaders. Also we'll add more elaborate debugging support, and
lots of new nodes of course. We’ll have more detailed profiling support, to measure the execution time of the graph for each node, to allow us to identify bottleneck nodes that need to be optimised.
We’re also thinking about different ways to use this system, to create samples on the fly for variations. In this scenario we would add nodes to allow waveforms to be output into buffers, which can then be played at a later point in
time.

The Future…

• Improve workflow even further

Andreas: Were do we go from here?
We’re planning to extend and improve this system in the future, and use it for more purposes. E.g. changing the code generator to allow the creation of compute shaders. Also we'll add more elaborate debugging support, and
lots of new nodes of course. We’ll have more detailed profiling support, to measure the execution time of the graph for each node, to allow us to identify bottleneck nodes that need to be optimised.
We’re also thinking about different ways to use this system, to create samples on the fly for variations. In this scenario we would add nodes to allow waveforms to be output into buffers, which can then be played at a later point in
time.

The Future…

• Improve workflow even further

• Time to Game could be immediate

Andreas: Were do we go from here?
We’re planning to extend and improve this system in the future, and use it for more purposes. E.g. changing the code generator to allow the creation of compute shaders. Also we'll add more elaborate debugging support, and
lots of new nodes of course. We’ll have more detailed profiling support, to measure the execution time of the graph for each node, to allow us to identify bottleneck nodes that need to be optimised.
We’re also thinking about different ways to use this system, to create samples on the fly for variations. In this scenario we would add nodes to allow waveforms to be output into buffers, which can then be played at a later point in
time.

The Future…

• Improve workflow even further

• Time to Game could be immediate

• Integrate asset creation side even more

Andreas: Were do we go from here?
We’re planning to extend and improve this system in the future, and use it for more purposes. E.g. changing the code generator to allow the creation of compute shaders. Also we'll add more elaborate debugging support, and
lots of new nodes of course. We’ll have more detailed profiling support, to measure the execution time of the graph for each node, to allow us to identify bottleneck nodes that need to be optimised.
We’re also thinking about different ways to use this system, to create samples on the fly for variations. In this scenario we would add nodes to allow waveforms to be output into buffers, which can then be played at a later point in
time.

Recap

Andreas: So to quickly recap. In order to allow us to fulfil the vision we had for a next-gen sound system and toolset, we’ve created an engine that plays sounds by executing a dataflow logic graph, which was done by
generating C++ code which is compiled to native code, for performance reasons. We’ve used this system with lots of inputs from the game engine to create sounds that dynamically change to reflect the environment they’re in
and to make them adapt more directly to the game situation. Thus we’ve allowed sound designers to create behaviour for their sounds themselves, with the possibility to reuse and share this logic among different sounds.

Recap

• Built a next-gen system and tool set from scratch

Andreas: So to quickly recap. In order to allow us to fulfil the vision we had for a next-gen sound system and toolset, we’ve created an engine that plays sounds by executing a dataflow logic graph, which was done by
generating C++ code which is compiled to native code, for performance reasons. We’ve used this system with lots of inputs from the game engine to create sounds that dynamically change to reflect the environment they’re in
and to make them adapt more directly to the game situation. Thus we’ve allowed sound designers to create behaviour for their sounds themselves, with the possibility to reuse and share this logic among different sounds.

Recap

• Built a next-gen system and tool set from scratch

• Integrated with our asset pipeline and workflow

Andreas: So to quickly recap. In order to allow us to fulfil the vision we had for a next-gen sound system and toolset, we’ve created an engine that plays sounds by executing a dataflow logic graph, which was done by
generating C++ code which is compiled to native code, for performance reasons. We’ve used this system with lots of inputs from the game engine to create sounds that dynamically change to reflect the environment they’re in
and to make them adapt more directly to the game situation. Thus we’ve allowed sound designers to create behaviour for their sounds themselves, with the possibility to reuse and share this logic among different sounds.

Recap

• Built a next-gen system and tool set from scratch

• Integrated with our asset pipeline and workflow

• Execute program for each sound at high rate

Andreas: So to quickly recap. In order to allow us to fulfil the vision we had for a next-gen sound system and toolset, we’ve created an engine that plays sounds by executing a dataflow logic graph, which was done by
generating C++ code which is compiled to native code, for performance reasons. We’ve used this system with lots of inputs from the game engine to create sounds that dynamically change to reflect the environment they’re in
and to make them adapt more directly to the game situation. Thus we’ve allowed sound designers to create behaviour for their sounds themselves, with the possibility to reuse and share this logic among different sounds.

Recap

• Built a next-gen system and tool set from scratch

• Integrated with our asset pipeline and workflow

• Execute program for each sound at high rate

• Sound programs created from data flow graph

Andreas: So to quickly recap. In order to allow us to fulfil the vision we had for a next-gen sound system and toolset, we’ve created an engine that plays sounds by executing a dataflow logic graph, which was done by
generating C++ code which is compiled to native code, for performance reasons. We’ve used this system with lots of inputs from the game engine to create sounds that dynamically change to reflect the environment they’re in
and to make them adapt more directly to the game situation. Thus we’ve allowed sound designers to create behaviour for their sounds themselves, with the possibility to reuse and share this logic among different sounds.

Recap

• Built a next-gen system and tool set from scratch

• Integrated with our asset pipeline and workflow

• Execute program for each sound at high rate

• Sound programs created from data flow graph

• Generate C++ and compile to native code

Andreas: So to quickly recap. In order to allow us to fulfil the vision we had for a next-gen sound system and toolset, we’ve created an engine that plays sounds by executing a dataflow logic graph, which was done by
generating C++ code which is compiled to native code, for performance reasons. We’ve used this system with lots of inputs from the game engine to create sounds that dynamically change to reflect the environment they’re in
and to make them adapt more directly to the game situation. Thus we’ve allowed sound designers to create behaviour for their sounds themselves, with the possibility to reuse and share this logic among different sounds.

Recap

New nodes for the graph representation can be easily added as game assets and allow the system to scale with the needs of their users. It has been embraced by other disciplines in our company for various purposes.

Recap

• Lots of inputs from game, dynamically change
sound

New nodes for the graph representation can be easily added as game assets and allow the system to scale with the needs of their users. It has been embraced by other disciplines in our company for various purposes.

Recap

• Lots of inputs from game, dynamically change
sound

• Creating new nodes is very easy

New nodes for the graph representation can be easily added as game assets and allow the system to scale with the needs of their users. It has been embraced by other disciplines in our company for various purposes.

Recap

• Lots of inputs from game, dynamically change
sound

• Creating new nodes is very easy

• Allows system to improve and designers to be
creative

New nodes for the graph representation can be easily added as game assets and allow the system to scale with the needs of their users. It has been embraced by other disciplines in our company for various purposes.

Recap

• Lots of inputs from game, dynamically change
sound

• Creating new nodes is very easy

• Allows system to improve and designers to be
creative

• Has been embraced by other disciplines

New nodes for the graph representation can be easily added as game assets and allow the system to scale with the needs of their users. It has been embraced by other disciplines in our company for various purposes.

Questions?
andreas.varga@guerrilla-games.com
anton.woldhek@guerrilla-games.com

@woldhek

Any questions?

