

Player Traversal Mechanics In The Vast World Of Horizon: Zero Dawn

Paul van Grinsven Game programmer Guerrilla

The World Of Horizon

Terrain mostly procedurally generated

Various ecotopes

 Manmade structures, indoor/outdoor

Overview

- Goals and constraints
- Tools, workflow and pipeline
- Responsive navigation
- Advanced traversal mechanics
- Future plans

Goals And Constraints

- Design:
 - Fluid and responsive
- Team:
 - 2 game programmers
 - 3 animators
 - 1 designer
 - 1 producer
- Technical:
 - 30Hz frequency updates

Tools, Workflow And Pipeline

Vast World Of Horizon: Zero Dawn

- Fluid and responsive
- Left or right foot forward
- Easy to control

- Problem:
 - Unresponsive stop to start transition
 - Waiting for completion of stop animation

- Animation events
 - Time, duration and ID.
- Provided to the game after each network update

Allowing early exit increases responsiveness

Setup of the start system

- Control variables
 - Move (bool), Speed (float) and Heading (float)
- Movement in code is handled with velocity and turn speed
 - Turn speed is evaluated from a curve. (x = linear speed (m/s), y = turn speed (deg/s)
 - Low speed = slow turn speed!

- Keep history of controller movement input direction for last 3 frames
 - No input for last 3 frames -> Stop moving
 - Move will always be set for at least 3 frames (0.1 seconds)!
 - Needed for 180 turns during move cycle!

Controlling responsiveness

• Problem:

- Uncontrollable when letting go of stick during start!
- Too much displacement with locomotion in stops.

- Solution:
 - Shuffles
 - Quick directional motions with small displacement forward
 - Steps
 - Small forward motions that switch footedness

- Move became false
 - Time window in the animation decides when to trigger a step or a shuffle.
- Move still true
 - Early blend to the cycle and eventually a stop

Vast World Of Horizon: Zero Dawn

Complex Terrain Navigation

- No navigation mesh for player!
- Metrics
 - 1.5m high jump, 50 degree max slope, 6m/s max speed
- Capsule-shaped collider
 - Different sizes (max 70cm wide,1.8m tall)

Complex Terrain Navigation

- Need to know ground surface gradient
 - Ignoring high frequency differences!
- Solution:
 - Smoothed slope angle calculation
 - Through multiple scheduled collision probes

Complex Terrain Navigation

Constructing a contact plane

$$\vec{n} = \left(hi\vec{t}_R - hi\vec{t}_L\right) \times \left(hi\vec{t}_F - hi\vec{t}_B\right)$$

- Procedural adjustment of legs and feet
- Animation decides when
 - Event-based
- Code decides where
 - Depending on game state and physics probe results

- Placing feet on uneven terrain
 - Raycast the collision mesh
 - From knee height
 - Two bone IK chain from ankle to knee to hips, with adjustment of pelvis as well
 - Foot rest events in all animations

Floating foot

- Solving the "floating foot problem"
 - Additional collision probing
 - Not only apply vertical adjustments

Vast World Of Horizon: Zero Dawn

Vaulting

- Handling various surface features
 - Step up, step over, step off
 - Different detection settings per movement context

Vaulting

- Step 1:
 - Allowed to vault?
 - Schedule probes
- Triggers can disable vaults
- Game assets can disable vaults

• Step 2:

- Process results from previous frame scheduled probe
 - If: Collision point high enough? (step up/over)
 - Do raycasts for shape analysis
 - *Else:* Horizontal displacement relative to starting point of swept sphere? (step off)
 - Find valid landing position

- Step 3:
 - Shape analysis
 - Raycasts with fixed offsets determine depth and height fluctuation
 - Store obstacle metrics

- Transition selection
 - Scoring system
 - Difference between obstacle contact position and animation contact position
 - Add bonus to climbable transitions

- Problem: How to match animation with obstacle interaction
- Solution: Warp it!

- Bending and stretching animated motion
 - To reach a specific position at a specific time
- Less animation variations needed
- Destination position can be adjusted during playback

- Requires analysis of the animation
 - Need to know the total remaining displacement at any time in the animation

Displacement per axis in source animation

Displacement per axis in source animation

Displacement per axis

With
$$\Delta x = \frac{D_{current}}{D_{remaining}} D_{destination}$$

- Enhancements: Allow any bone to reach the given destination
 - Calculate offset of the guided bone to trajectory bone each frame and subtract this offset from the destination
 - Important: Trajectory is defined by motion of guided bone!

- Enhancements: Only warp during specific time ranges in the animation
 - Warping looks best when feet are not touching ground!

Displacement per axis in source animation

- Enhancements: Specific arrival time
 - Problem: Don't always want to reach destination at end of animation
 - Solution: Support user defined arrival time
 - Indicated by event in animation
 - Allowing for post arrival motion

- Enhancements: Preserving velocity by adjusting playback speed
 - Problem: Adding displacement can cause unnatural speed ups
 - Solution: Adjustment of playback speed allows you to preserve original animation velocity

- Example: Warping an animation twice its own distance
 - Problem: Doubles the velocity

Displacement per axis in source animation

When warping an animation twice as far

- Solution:
 - Modify playback speed to twice as slow

Displacement per axis in source animation

When warping an animation twice as far

- Used for diving into water
- Used for climbing out of water
- Transition onto annotations

Vast World Of Horizon: Zero Dawn

Environmental Metadata

- Tile-based, stream-able world
 - 512m by 512m tiles
- More than 100 tiles!
 - 3x3 tiles always loaded

Environmental Metadata

- A single tile
 - Collision mesh
 - Water volumes
 - Stealth areas
 - Roads
 - Geometric annotations

Geometric Annotations

- Points and lines
- Static or dynamic
- Tagged
- Stream-able
- Provides semantics

Geometric Annotations

• Tags

- Climbable

- Balanceable

- Unstable

- Ziplineable

- Etc...

Jump System

- Introducing a new jump system
 - Pre apex (animation driven)
 - Post apex (procedurally)
- Improving control
 - In-air steering
 - In-air braking

Jump Guidance

- Solution:
 - Predict trajectory
 - Apply small adjustments for guidance
- Important:
 - Maintain the illusion of control!

Motion Analysis

 Motion prediction and planning requires animation metadata:

 Duration, distance, rotation, average speed, etc...

- Solution:
 - Motion tables

Motion Analysis

- Calculate and store the metadata in a database for all valid permutations of input variable values for the animation state
- When querying metadata from the database blend several results together, based on the given values for the input variables

Motion Analysis: Construction

Motion Analysis: Construction

- Input samples:
 - X: 0 or 1 and Y: 4 or 8
- Store metrics for 3
 permutations of input
 values

Motion Analysis: Querying

- Metrics for (X=0.25, Y=6)?
 - 0.5*0.75*SampleA +
 - 0.5*0.25*SampleB+
 - 0.5*SampleC

Sample	X	Y
Sample A	0	4
Sample B	1	4
Sample C	-	8

Constructing The Trajectory

- Apex position:
 - Take off position + jump motion displacement
- Initial fall velocity:
 - Velocity from the last frame of the jump motion

Take off

position

Jump Guidance: Forward Speed

$$c_v = \frac{D_{desired}}{D_{original}}$$

Jump Guidance: Turn Speed

• Calculate the circle that gets us there, in 2D

Top down view

$$R = \frac{x^2 + y^2}{2|x|}$$

Vast World Of Horizon: Zero Dawn

Climbing

- Relying on geometry annotations
- One attach point on the annotation

Climbing

- Transition selection
 - Find nearest annotation in the direction of movement stick
 - Find best transition by matching conditions, ranges and check for blocking collision.
 - Trigger transition and apply warping

Climbing: Guiding Limbs

- Directing hands and feet while climbing
 - Hands: holding onto geometry
 - Current or destination
 - Feet: against geometry if possible, otherwise dangling

Climbing: Guiding Limbs

- Collision probes
 - Through the palm of the hand
 - Two sets for the feet
- Individual control of all four limbs
- Limb rest events in all animations
 - Locks the limb as well sticks it to the geometry!

Climbing: Dynamic Objects

- Dynamic annotations
 - Handling different update frequencies
 - Taking displacement and rotation into account
- Dynamic IK calculation

Post Mortem

- What worked well?
 - Animation queuing based on events
 - Controllable responsiveness
 - Geometry annotations
 - Tweakable jump guidance
 - Snappiness vs realism

Post Mortem

- What didn't work that well?
 - Lack of good editor/visualization tools caused level designers to not focus on traversal
 - Tools were still in development
 - Hard for level designers to build traversal paths
 - Vault system
 - No navigation mesh for player

Post Mortem

- What didn't work that well?
 - Very complex animation networks

Future Plans

Research motion matching

http://www.gdcvault.com/play/ 1022985/Motion-Matchingand-The-Road

 Investigate player navigation through use of navigation mesh

Full body IK

Acknowledgement

- Guerrilla
- Team Traversal
- Thijs Kruithof

Thank you!

THANK YOU!

A&Q

- Questions?
- Also feel free to mail us!
 - paul.vangrinsven@guerrilla-games.com
 - thijs.kruithof@guerrilla-games.com

