
GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

GPU-based Procedural Placement
in Horizon Zero Dawn

Jaap van Muijden

Senior Tech Programmer
Guerrilla Games 



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Motivation

 Quick iterations
 Large variety
 Believable look
 Art Directable

 Data driven
 Deterministic
 Locally stable

Presenter
Presentation Notes
Before we made Horizon, Guerrilla was known for their Killzone Franchise.
In our Killzone games, each square meter of a level was manually polished. Guerrilla Games has always had high quality standards when it comes to our environment art. 

Environment artists are experts in dressing up environments to look interesting and believable, using light, composition and color.
The open world of Horizon Zero Dawn led us to investigate how to create and dress a large open game world using procedural systems, while trying to stay true to that quality standard.

Historically, procedural systems have often looked monotonous, bland and robotic, but they do allow for QUICK ITERATIONS and at the end of the day, a reduced time investment per square kilometer makes larger world scales feasible.

Our goal was to create a system, in which an artist can describe a LARGE VARIETY of interesting and BELIEVABLE environments, which can be applied anywhere in the world.
But we had some restrictions. Both the system and the resulting content should be highly ART DIRECTABLE and seamlessly integrate with manually placed art.

On top of this, our art director wanted to be able to freely move mountains, rivers and gameplay without the need to continually redress the world.
That means that the system should be fully data driven, deterministic and locally stable.



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Real-Time Procedural Placement

 Started traditional CPU
 Moved to GPU based
 Real-Time Placement
 Density Based Placement

Presenter
Presentation Notes
We started off with the more traditional procedural workflow of using procedural definitions and off-line bakes place our hand-authored assets from our procedural definitions.
We had already experimented a bit with this idea during Shadowfall, but the bake times were a big problem and iteration was slow.

Looking for a solution, we tried moving our procedural placement OVER TO GPU, in an effort to reduce bake times. 

When we were looking at the placement speed of our first GPU prototype, we quickly realized that this was the way to go.
In fact, the results were looking so good, that we decided to try to make the system fully REALTIME, as this would not only remove bakes altogether, but it would also help reduce the amount of data we would have to store, and stream from disk.

This would mean, that we would be actively generating the environment from procedural logic, and update the world while the player moves through it.

In order to accomplish this on the GPU while still being deterministic and locally stable, we have chosen to go with DENSITY BASED SYSTEM, which means that our procedural logic does not directly place objects. Instead the procedural system generates 2D density maps, which are then discretized into a point cloud of objects.




Presenter
Presentation Notes
Our prototype started small, but we kept getting requests about expanding the system from our sound, effects and even gameplay teams. 
During the development of Horizon, it grew into a rather versatile system.

You see the game running behind me, and you can really see the difference the placement system makes to the game, especially when you turn it off.
As you can see, almost the entirety of the vegetation of Horizon zero dawn is procedurally placed.







GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Results

We use procedural placement for all nature!
 500+ asset types
 100.000+ objects in scene
 ~250µs avg busy load on GPU

Presenter
Presentation Notes
We ended up with the procedural placement managing around 500 types of objects at any given time. During normal gameplay, the dedicated rendering back-end is managing around 100.000 placement meshes around the player when the player explores the world.

This is a lot more than what we had originally scoped for the system; we ended up placing not only vegetation and rock meshes, but also effects, gameplay elements (like pickups) and wildlife.
To support all of this, we were continually tinkering with our GPU placement pipeline and its dedicated rendering pipeline to keep things in budget, which averages around 250 per frame when the player is moving through the world



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Creating diversity

 Ecotope describes environment
 Ecotopes determine:

 Asset types
 Asset distribution
 Colorization
 Weather
 Effects
 Sound
 Wildlife

Presenter
Presentation Notes
As I said earlier, one of our goals was to have a large amount of variety within the world of horizon. 
To accomplish this, we broke the world down into different unique environment types that we could then design and build independently. In the real world; classification of natural environments is done through the concept of ECOTOPES. 
We decided to adopt this concept, and we started by defining our version of an ecotope.

An ecotope defines the biodiversity and geographical characteristics of a particular area.
In practice this includes what type of ASSETS need to be placed and HOW. In drives the COLORIZATION of rocks and vegetation, determines WEATHER patterns, EFFECTS, SOUND and WILDLIFE.

It follows that each ecotope will need to have its own procedural design, and so this is where we start our procedural authoring.



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Placing an Ecotope

 Create a believable world
 Artists have full control

 The Placement Data, 
 The Placement Logic
 Hand authored Assets

Presenter
Presentation Notes
Our goal was to populate the world in a natural, Believable and interesting manner as a good environment artist would manually accomplish.
To get as close to this goal as possible, we needed to create a system that captures our artists logic, expertise and skill. 
Therefore, the system was designed in such a way that our artists could have full control on not only the INPUT DATA but also the system’s PROCEDURAL LOGIC. And of course we will still be using hand authored individual ASSETS.





GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

WorldData

 Collection of 2D maps
 Streamed in sections
 All Generated
 All Paintable

 ~4MB/km2 exclusively

Presenter
Presentation Notes
So what data do we need to create convincing, natural looking ecotopes.

Well, we didn’t know either […] so we just started building, adding data as we needed and keeping a tight memory budget. In the end we had a large amount of data that described the world to not only the placement system, but all other game systems as well.

We call this our WorldData, which is a COLLECTION OF 2D MAPS that we can access across our gameplay systems, and which are also used as the base inputs of our procedural system. These maps are continuously STREAMED IN SECTIONS around the player and fed into the ecotope’s placement logic.

Most maps are initially seeded using various BAKE PROCESSES such as WorldMachine and tools like Houdini. We have additional paintable layers on top of these base maps, so artists can EDIT THE MAPS with our in-game editor through brushes or other tools.

The Procedural Placement System USES ABOUT 4MB/km2 worth of this maps exclusively. This comes down to a data footprint of about 32 bits per square meter.
Lets give you an idea about what kind of data we ended up with in our game





GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Painted World Data

 Extensively Hand Painted
 Decoding Logic

Placement_Trees

D
en

si
ty

Map Value 10

Inner
Forest

Forest
Edge

Sparse 
Trees

1

Inner Trees

Edge Trees

D
en

si
ty

Map Value 10

1

Presenter
Presentation Notes
Here is a section of one of the most widely used world data maps, called Placement_Trees. It was originally baked from world machine, but later extensively HAND PAINTED to fit art direction and gameplay requirements.

Artists always want to pack as much data in these kinds of maps as possible.
To that end, they designed some shared PROCEDURAL LOGIC to encode additional information out of these maps.
This particular map, Placement_Trees , acts as our main tree placement map.
It can be used as a density map, but ecotopes often encode additional meaning to it.
[picture, gradient, soft brush]

Within an ecotope they can then hook in Lush “Edge trees” on values near zero and high branchless Inner Trees on values near one.
[picture, graph]

This is an example where artist control over both the data and the placement logic really helps to create a more natural look. Even better, it also solves a visibility requirement from design without the need of programmer support.



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

World Data List

Name Res Format
Height_Terrain 0.5 m 16 bit
Height_Objects 0.5 m 16 bit
Height_Water 0.5 m BC6U
Variance_Trees_Bush 2.0 m BC7
Variance_UnderGrowth_Stealth 2.0 m BC7
Variance_RockColor 1.0 m BC7
Variance_Foliage_Color 1.0 m BC7
Variance_Lichen_Density 1.0 m BC7
Erosion_Wear 0.5 m BC7
Erosion_Flow 0.5 m BC7
Erosion_Deposition 0.5 m BC7
Terrain_Cavity 0.5 m BC7
Water_Flow 0.5 m BC7 RGB
Water_Vorticity 0.5 m BC7

Name Res Format
Placement_Trees 1.0 m BC7
Placement_BlockBush 1.0 m BC7
Placement_Undergrowth 1.0 m BC7
Placement_StealthPlants 1.0 m BC7
Placement_PickUps 2.0 m BC7
Placement_Natural_Resources 2.0 m BC7
Region_Destructibility 2.0 m BC7
Region_Activity_Space 2.0 m BC7
Topo_Roads 0.5 m BC7
Topo_Water 0.5 m BC7
Topo_Objects 0.5 m BC7
Ecotope_Effect 0.5 m BC7
Ecotopes A-H 2.0 m BC7

Presenter
Presentation Notes
There are many other types of world data. Most of them are BC7 compressed.
Resolution varies across different types, ranging from 1m to 4m resolution.
Lets quickly look at a few more maps before we move on.





GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Generated World Data 

Topo_RoadsTopo_Objects

Presenter
Presentation Notes
Here we see the road data, which is painted by the road tool, and the object data, which is generated from non-procedural objects within the game. 

Because the procedural system is map based, world data maps like these are the main way it can read the the rest of the non-procedural content.

You can imagine, that when an artist designs the procedural logic for an ecotope, artists have to make sure that the ecotope reacts naturally to things like roads, rocks and rivers. 
And big part of ecotope logic revolves around reading these kinds of maps and defining areas such as “side of the road”, “next to a rock” or as we just saw “edge of a forest”.

These structures can get rather complex, luckily these definitions can be made once and then shared between ecotopes.





GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Mulitple Height Layers
Height_Terrain

Name Res Format
Height_Terrain 0.5 m 16 bit
Height_Objects 0.5 m 16 bit
Height_Water 0.5 m BC6U

Presenter
Presentation Notes
Our height maps are also part of the world data, and these maps are used in logic graphs and as a placement height for our procedural objects.
We have several layers of heightmaps, so we can place things not only on the ground, but also on top of objects, and the water surface.




GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

WorldData: Baked Maps

Erosion_Flow Erosion_Deposition

Presenter
Presentation Notes
Finally some generated maps; these come out of world machine and are almost never painted by artists. We use these kind of natural maps to create realistic variations and environmental reactions within our ecotopes.
I think you all get the idea; lets move on



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Density logic

 Artists have full control
 Hand authored assets
 The Placement Data
 The Placement Logic

Presenter
Presentation Notes
So I hope this gives you an idea of our input data, and how artists can bake and paint into them.
So we’ve seen how artists can setup and manipulate world data; now lets take a look at the logic side of things. 

In short, we use logic networks; similar to nuke, substance or any other shader builder tool out there.

We’ve already seen some hints at sharing logic, and using tools such as curves, these are all aspects of the density networks that artists can click together.

The purpose of a logic network is to generate a single density map, which can be linked to assets, or sets of assets, using world data is its input. Those density maps are then discretized into a cloud to actually instance the linked assets in the world.

Lets see how we can combine world data maps into a density map.






GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Placement_Trees

Topo_Objects
Topo_Roads

Topo_Water

Result

Presenter
Presentation Notes
In this example, lets say we are designing the logic for placing a tree within an ecotope.
As a starting point, we’ll bring up a world data node that links in the placement_trees map we saw earlier.
We can hook this up as the density of our tree asset directly, but then we’ll get trees placed in water, through rocks and roads. 

So to remove the rocks, we multiply out the object map, by multiplying the values together.
Then we do the same with the water map and the road
The result looks like this, you end up with a map that defines the valid areas for trees. 
This logic graph can then be referenced by not only the trees, but also it can be linked into other logic that want to know where trees might be placed.

NextSlide: our first ecotope



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Ecotope Assets

Forest

Trees

Bushes

Undergrowth

Lodgepole Pine

Douglas Fir

Grease Wood

Carex (Grass)

Paysons Sedge

Fern

3.0

1.0

1.0

6.0

6.0

1.0

Presenter
Presentation Notes
Here we have our forest ecotope asset definition. It consists of trees and plant assets grouped in a hierarchical structure. The leaf nodes on the right link to actual resources, called the (placement) targets, which will be instantiated across the ecotope. 

Now for each asset, we define the Footprint, which defines the effective diameter of the object within the placement system.

The discretezation algorithm will use the footprint to space out objects and perform collision avoidance. You can see that the large meshes such as trees are placed six meters apart, while the undergrowth meshes are only one meter apart.

Since there is no logic linked in yet, all the assets will have full density. The density maps of the individual assets will be fully white. 

Ok, let’s load it into the game






Presenter
Presentation Notes
Before capturing this movie, I’ve had to lower the bush density, because the bushes were covering the ground completely, obscuring the grass. 
Other than that this is the direct procedural output of the simple graph we just made, without any logic to speak of.






GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Forest

Trees

Bushes

Undergrowth

Lodgepole Pine

Douglas Fir

Grease Wood

Carex (Grass)

Paysons Sedge

Fern

3.0

1.0

1.0

6.0

6.0

1.0

Ecotope Assets

Placement_Trees

Clearing

Inverse

Presenter
Presentation Notes
It’s a good starting point, but let’s layer a little bit of logic into it.

First we load up a world data map and apply it directly to the root forest node in our placement graph; CLICK 
Now that the forest node has a density map linked to it, it will pass its density on on to its child nodes.

Lets take it one step further; Let’s define a clearing in our forest.
We link in a new WD map, we’ll call it clearing CLICK
Now we want to remove things from clearings, not add things, so we add an inverse node. CLICK
And now we link it into the trees and bushes. CLICK

So while the forest as a whole will still listens to the tree map, inside the forest, we can now paint a clearing that will reduce the density of all bushes, and all trees. 
So lets run this in-game, there won’t be any world data maps filled in that area, so we’ll have to paint in the tree map and the clearing map ourselves.





Presenter
Presentation Notes
First we have to paint in the forest map, this starts black, giving it a starting density of zero.
Next, lets paint in the clearing map, creating a clearing within the forest.

This is all very basic, but it shows how easily an artist can setup a piece of procedural logic.
In production, the ecotopes ended up being very complex; artists could create deep systems of asset groups and logic networks.








GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Production Logic

Presenter
Presentation Notes
That small network we just made looks like this in our editor framework.

CLICK 

For instance, this is one of our most complex logic networks, containing a large amount of our shared area logic, which is used across ecotopes. You make them once, and then share them between ecotopes.
Now lets load in a full fledged ecotope, and see how it reacts to the world around it

NextSlide: movie



Presenter
Presentation Notes
So here we have another part of the world, where a full fledged ecotope has already been applied. Let’s see how it reacts to world data. Here is me trying to use the editor







MOVIE_ECO

Presenter
Presentation Notes
Here we are looking at the inverse; instead of changing the world data with our painting tools, we’re applying multiple ecotopes to the same area in the world.






GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Layer Based Placement

 Prepare our assets
1. Flatten graph into Layers
2. Compile intermediate form
3. Optimize and Merge layers

Evaluate Discretize

Density Map

WORLDDATA

OBJECTSLAYER

Presenter
Presentation Notes
Ok, let’s get into the technical details!
We have seen how to setup the logic, and how to link in assets and assets groups. We’re done looking at the inputs of the system, now lets move on to our real-time algorithms.

Before we can do anything with our data, we need to compile our authored content networks into a usable form. Our first step is to flatten the graphs into more manageable units.
We iterate through all the assets within our ecotope logic, and convert them into a flat list of layers.

Each layer represents a run-time procedural payload, linked to a single asset. It contains all the information to calculate a density map from world data and populate an area within the world.

The logic network that is associated with it is compiled into an INTERMEDIATE FORM. This representation can be compiled into a compute shader binary, or be fed direcly into a GPU based interpreter shader that we use for our debugging interfaces.

This intermediate form allows us to apply of AUTHOR DRIVEN MERGING SEMANTICS; this merging step is necessary to reduce the amount of unique layers. 
In practice it crunches down the amount of layers around the player from several thousands, to several hundreds.

Now have our list of layers, lets see how the placement of such a layer takes place on GPU. We start out with our original plan of density map generation, followed by discretization.



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Step1: DENSITYMAP

 Single Layer
 Scaleable granularity 
 Mipmapped World Data

Discretize

Density Map Texture

WORLDDATA

OBJECTSLAYER DENSITYMAP

Presenter
Presentation Notes
Our first part of the run-time pipeline evaluates the density graph for a SINGLE LAYER, within a given area in the world. Under normal conditions, this is done by a precompiled compute shader called the densitymap shader, precompiled from the intermediate form stored in the layer data.

Our entire placement pipeline scales up in GRANUARITY, depending on the footprint of the asset. Large objects such as trees are placed in big 128x128m blocks, while grasses are placed in 32x32 blocks. Independent on the granularity, we have a fixed densitymap resolution of 64x64 pixels per block.



Presenter
Presentation Notes
Here you can see the in-game debugging interface, where artists can step through density calculations, and see the resulting discretization step. It’s also used to browse and inspect the hundreds of active layers. 

This is the placement system running on a GPU intepreter, that could be easily halted, stepped through and debugged. The use of an intermediate representation and an interpreter turned out so versatile, we used it throughout the development of horizon. 

You can see a density map being built, followed by the discretization step.



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Step2: GENERATE

 Discretizing step
 Dither based
 Responsible for collision

DENSITYMAP

Density Map Texture

WORLDDATA

LAYER OBJECTSGENERATE

Presenter
Presentation Notes
After the densitmap step, we run the generate step, which DISCRETIZES the density map into individual placements.
Our method is based on a technique called ordered dithering. 



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Step2: GENERATE

 Discretizing step
 Resonsible for collision
 Dither based

Presenter
Presentation Notes
So here we have our super-realistic looking density map. 
Now if we downscale this, and apply dithered filtering, And then apply an ordered dithering on it (in photoshop), we end up with something like this. CLICK 

Now if we imagine creating an object on every white pixel, we have a form of discretization. CLICK
There are no objects on zero density pixels, with density increasing as the values become higher, until white has full coverage.

The process behind this is extremely simple: Each pixel is evaluated independently against a small repeated pattern of threshold values, and the result colors the pixels. Perfect for GPUs: No dependencies, and a small dataset.

The most commonly used pattern in these kinds of dithering is a Bayer Matrix. CLICK
The numbers define the order in which the threshold increases for a single output pixel. The pattern below shows the resulting image using a slowly incrementing input.

But lets’s be honest, it will be a bit obvious if we would place all our assets in a pattern like this. 
Luckily, we’re not tied down to pixel boundaries.
Next Slide




GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Generating the pattern

 Generation Tool
 Rules to follow:

 Even spread thresholds
 Maximize 2D distance

 Uniform 2D distance w
 Scale to w = footprint

Presenter
Presentation Notes
We’re on GPU, and we have linear interpolation and we can define our own uv’s thankyouverymuch. 
So our pattern is not a regular pixel grid, but a nicely sorted set of explicit positions, each with its own implicit threshold value. 

This is an old screenshot from our pattern generator, from years ago when we were setting it up. It’s a bit hard to see, but it is basically a disk packing with some configurable randomization, point count, boundary configurations etc. 

It’s not a coincidence that everybody used a bayer matrix when doing ordered dithering, it’s a mathematically constructed matrix that has some nice properties, which we also applied to our more freestyle version.
The thresholds themselves need to be EVENLY SPREAD between 0 and 1
the points are ordered to have MAXIMIZED DISTANCE BTWEEN two consecutive threshold values. 

By scaling the pattern so the 2D distance W equals the footprint of the layer, we can apply the pattern directly in world space, with the resulting point-cloud having proper spacing as defined by its layer settings.



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Presenter
Presentation Notes
Trees in a forest are a good example of a very large footprint, combined with full coverage density. This way, we have an even, well defined minimum distance between trees, guarantees proper navigation for the player, as well as the enemies.

But even with a proper bayer pattern, generate still has the annoying side-effect of creating visual patterns when density gets high.
You can see here how the trees are lining up in the middle there. 
It took quite long for someone to notice this, but once you see it you cannot un-see it, so we added a user defined noise offset. We had plans for multiple stencils and Wang tiling, but in the end it wasn’t really needed.



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Step2: GENERATE

 One pattern per group
 One sample per thread

1. Range Test
2. Threshold Test
3. Position generate
4. Normal construction
5. Stage to buffer

~10µs, VGPR: 28, SGPR: 64, Cycles: 342

WaveFront 0 & 1
TCO=34,12

WaveFront 1 & 2
TCO=35,12

WaveFront 5 & 6
TCO=34,13

Presenter
Presentation Notes
This is an overview of four threadgroups of the GENERATE shader, that discretizes a density map across a area. Here we see the target area in white, and four tiled patterns across the area. Each compute threadgroup runs over a single pattern, where each compute thread evaluates one sample point. This maps very nicely into the threadgroup shader structure.

Let’s step through a single compute thread.
First, we have to make sure we EARLY OUT on all the points that lie outside of the tile; 
We read the density and to do our THRESHOLD TEST. 

When we pass the threshold test we have our position in 2D, but no height to go with it. Therefore, we sample the proper HEIGHTMAP to generate the full position.

Since we’re in the texture cache neighbourhood here, we might as well construct the HEIGHT NORMAL along with it.
The threads that pass the tests appended their oriented point to buffer in GROUP LOCAL MEMORY.
Finally, we append the data onto the output buffer at the end to reduce atomic contention on the output buffer.

So now we have a buffer with an oriented point cloud, but no full world data matrices yet. We also haven’t applied any per-object logic yet, such as random tilting, rotation, elevation etc.



Presenter
Presentation Notes
Here again we see some in-game screens to show the GENERATE discretization in game.

Here we have a layer that is covering areas with particle effects. The placement system is instructed to simply fill the designated areas with full coverage. The result is a tightly squished hexagonal grid.

This shows a more natural placement, a douglas fir is placed with within a forest area.



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Step3: PLACEMENT

 Needs pattern idx/id for RNG
 Basis generation
 Bounding box generation

~7µs, VGPR: 28, SGPR: 40, Cycles: 347

DENSITYMAP GENERATE

Density Map Texture

WORLDDATA

PLACEMENTLAYER OBJECTS

PointCloud (normal,pos)

Presenter
Presentation Notes
Finally, the PLACEMENT shader applies all of the behavior parameters and generate world matrix and bounding box from the generated point cloud. For each input point, there is one output matrix.

So far, all operations have been deterministic, except for the output order of the GENERATE shader.
We need to pass the stencil point and tile ID along with the position and normal, so each placement has a fully deterministic ID. 

[We have now completed our journey from a density map graph to a buffer full of world matrices.]



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Pipeline overview

 Run pipeline for each layer
 Independently discretizing
 Collision?

DENSITYMAP GENERATE

Density Map Texture

WORLDDATA

Init Copy

PointCloud (normal,pos)

PLACEMENT

PointCloud (Mat3x4)

CPU memory

Presenter
Presentation Notes
This is the full overview of the the GPU compute pipeline that is kicked of for a single layer of placement.

World data goes into the DENSITYMAP shader, which evaluates it into a 64x64 density texture. It is sampled by GENERATE into a point cloud, expanded into world matrices by PLACEMENT and finally copied to CPU memory.

You can imagine how this all plays out across multiple layers, and all these layers can be evaluated in parallel on GPU without much problems…oh wait

We haven’t solved collision. as it stands, you’ll just end up with lots of assets placed on top of each other so some kind of collision avoidance has to be added.
Luckily, there are some interesting solutions to this problem.




GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Solving Collision

 Different footprint?
 Read-back, dependencies 

 Same footprint?
 Layered Dithering 

Presenter
Presentation Notes
The general solution for collision in these cases is doing read-backs, this means that you would have to read back previous placements, and either discard or re-iterate on collision.
This creates complex dependencies within your GPU pipeline if you want to hold on to that local stability and deterministic behavior. And GPU’s don’t really like those; no flushes please.

However, when footprints between layers match up, we can use a dithering technique called layered dithering, which is basically free collision avoidance during discretization.

Readback was our backup path for colliding objects across different footprints. This lives somewhere in my saved changelists, it never made it into the game proper. Instead we make extensive use of the layered dithering technique to solve collision between placement layers with the same footprint.



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Layered Dithering
D

en
si

ty

1

0

Presenter
Presentation Notes
Before we look into the details, lets change gears and focus on a one dimensional slice of the densitymap to make it easier to visualize. 
So we grab a density map
Take a slice out of it




GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Layered Dithering
D

en
si

ty

1

0

 Layered density maps
 Two values in density map
 Two-Sided threshold test

D
en

si
ty

1

0

D
en

si
ty

1

0

D
en

si
ty

1

0

D
en

si
ty

1

0

Presenter
Presentation Notes
So in normal dithering, you have only one density map, with layered dithering, we’re dithering multiple layers of densities at once. Our starting point is still the same, a single density layer.

We then run our GENERATE shader, which samples the density on different points, with different thresholds. We can visualize this as these little pins. So each pinpoint that lies below the density map generates a placed object

Now what would happen if we would run another layer directly afterwards, with the same footprint.
It would have an identical dithering pattern, and it would place directly on top of them.
The solution to this problem, is to simply layer the densities together.

Now each pin-point can only lie in one range, removing any possibility of collision. 
The density maps are now suddenly double layered (density volumes), having a minimum and maximum bound.
[each layer floats on top of the other layers]

The layers along a given sample point can now be seen as a propability distribution of multiple assets, where the threshold of the sample point is the evenly distributed stochastic value that selects one.
This whole thing also holds in 2D dithering.





GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Layered Dithering

 DENSITYMAP overhead
 Independent eval
 Might need DENSITYMAP for non-placing layers
 More work, but No Flushes
 Sparse placement causes dependency overhead
 Use ordering heuristics to reduce DENSITYMAP/GENERATE

DENSITYMAP GENERATE

Density Map Texture (float2)

WORLDDATA

Init Copy

PointCloud (normal,pos)

PLACEMENT

PointCloud (Mat3x4)

CPU memory

DENSITYMAP DENSITYMAP

WORLDDATA WORLDDATA

Presenter
Presentation Notes
So we solved collision, and we still end up having dependencies, but the dependencies only relate to the DENSITYMAP phase, and with some refactoring, you can still evaluate all layers independently on GPU using atomics, saving costly GPU flushes.

So here you can see that we run multiple densitymap shaders before we hit GENERATE.

This is actually the most common case in production ecotopes. We often have more than 20 layers with the same footprint that stacked on top of each other like this and we are almost always interested in placing only a very specific subset of layers.
Meaning that we run DENSITYMAP on layers that we don’t want to place, but we need their DENSTIYMAP to reach higher up in the stack.

So our pipelines run N density maps for each layer that actually need to be placed. We want this number N to be as low as possible,so we use all kind of heuristics to order the layers in such a way that the most commonly placed layers are at the bottom of these stacks.






GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Pipelining on GPU

 Instantiate pipeline 64 times
 Each pipeline has multiple DENSITYMAP
 Each pipeline emits one layer
 Lots of unnecessary flushes within pipeline

PIPELINE 0

GENERATE

Density Map Texture 

Init Copy

PointCloud (normal,pos)

PLACEMENT

PointCloud (Mat3x4)

CPU

N X
DENSITYMAP

PIPELINE 64

GENERATE

Density Map Texture 

Copy

PointCloud (normal,pos)

PLACEMENT

PointCloud (Mat3x4)

CPU

N X
DENSITYMAP

...

Presenter
Presentation Notes
As a final step, we look at our GPU scheduling. If we would only place one layer per frame, it would extremely slow, so in order to schedule more work, we instantiate our entire pipeline multiple times. Note that we can not schedule dependent layers across different pipelines. So we mostly parrelize spatialy in this step; each pipeline picks an area to populate.

In our first prototype, pipelines would emit its shaders one at a time, but again this means that each shader uses the output data of the shader before it, which is not ideal because they can’t overlap on GPU.




GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Pipelining on GPU

PIPELINE 0

PIPELINE 1

PIPELINE 16

PIPELINE 2

DENSITYMAP GENERATE

PLACEMENT

PLACEMENT

PLACEMENT

S
Y

N
C

PLACEMENT
INIT ALLOC COPY

S
Y

N
C

S
Y

N
C

GENERATE

GENERATE

GENERATE

DENSITYMAP

DENSITYMAP

DENSITYMAP

... ... ... ...

Presenter
Presentation Notes
So this is our final gpu load layout.

We first run DENSITYMAP across all pipelines independently
We keep doing this until we hit a layer that needs to be placed
Then we run the GENERATE shader, and a special ALLOCATION shader to dynamically allocate memory in the copy buffer
Then PLACEMENT converts the oriented points to the copy buffer

The entire thing can be repeated until all work is done for all pipelines, but we shipped with a maximum of 4 emits to reduce memory load and prevent GPU spikes.
Finally the copy buffer copies all data to CPU in one go. This saves us hundreds microseconds of syncing and copying overhead.








GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Conclusion

 Procedural Placement is extensively used
 Good visual quality
 Suitable for art direction
 Unpolished areas in shippable quality

 250µs avg. busy load

 Powerful tool in making natural worlds
 Nature assets created by 3 people
 Ecotopes made by 1 person



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

User Screenshots

Proof of success:
Users are making screenshots of our output!



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

 Questions?



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

 Questions?



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

 Questions?



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

 Questions?







GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017



GPU-based Procedural Placement in Horizon Zero Dawn – Guerrilla Games - GDC 2017

Questions?


	GPU-based Procedural Placement�in Horizon Zero Dawn�
	Motivation
	Real-Time Procedural Placement
	Slide Number 4
	Results
	Creating diversity
	Placing an Ecotope
	WorldData
	Painted World Data
	World Data List
	Generated World Data 
	Mulitple Height Layers
	WorldData: Baked Maps
	Density logic
	Slide Number 15
	Ecotope Assets
	Slide Number 17
	Ecotope Assets
	Slide Number 19
	Production Logic
	Slide Number 21
	MOVIE_ECO
	Layer Based Placement
	Step1: DENSITYMAP
	Slide Number 25
	Step2: GENERATE�
	Step2: GENERATE�
	Generating the pattern
	Slide Number 29
	Step2: GENERATE
	Slide Number 31
	Step3: PLACEMENT
	Pipeline overview
	Solving Collision
	Layered Dithering
	Layered Dithering
	Layered Dithering
	Pipelining on GPU
	Pipelining on GPU
	Slide Number 40
	Conclusion
	User Screenshots
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Questions?

