
Wed, October 12, 2011

Practical Occlusion Culling in
Killzone 3
Michal Valient

Lead Tech, Guerrilla B.V.

Wed, October 12, 2011

Talk takeaway
§Occlusion culling system used in Killzone 3
§The reasons why to use software rasterization
§(Some) technical details
§How to pick good occluders
§Q&A

Wed, October 12, 2011

I’ll first describe the occlusion system in Killzone 3
 and the reasons why we chose it and why should you

Then I’ll talk about some technical details
 and heuristics for picking good occluders.

And I hope we’ll have some time for questions.

... but let’s first take look at what Killzone 3 actually is.

Talk takeaway
§Occlusion culling system used in Killzone 3
§You’ll love software rasterization
§(Some) technical details
§How to pick good occluders
§Q&A

Wed, October 12, 2011

Killzone 3 is a first person shooter released
 earlier this year exclusively for Playstation 3.

And it's essentially about space marines trying to escape
 from the planet full of space Nazis.

Talk takeaway
§Occlusion culling system used in Killzone 3
§You’ll love software rasterization
§(Some) technical details
§How to pick good occluders
§Q&A

 Huge environments
Wed, October 12, 2011

The game is set in huge detailed outdoor environments…
 Where you can fly around with an armed jetpack...
 And you get to fight giant spider robot.
 Twice.

Killzone 3 is a big game
 and we needed good object visibility solution
 that works well with these diverse settings.

Talk takeaway
§Occlusion culling system used in Killzone 3
§You’ll love software rasterization
§(Some) technical details
§How to pick good occluders
§Q&A

 Armed JetPacks
Wed, October 12, 2011

The game is set in huge detailed outdoor environments…
 Where you can fly around with an armed jetpack...
 And you get to fight giant spider robot.
 Twice.

Killzone 3 is a big game
 and we needed good object visibility solution
 that works well with these diverse settings.

Talk takeaway
§Occlusion culling system used in Killzone 3
§You’ll love software rasterization
§(Some) technical details
§How to pick good occluders
§Q&A

 Giant Spider Robots
Wed, October 12, 2011

The game is set in huge detailed outdoor environments…
 Where you can fly around with an armed jetpack...
 And you get to fight giant spider robot.
 Twice.

Killzone 3 is a big game
 and we needed good object visibility solution
 that works well with these diverse settings.

Killzone 3 visibility solution
§Software rasterization running on SPUs
§Render occluders into depth buffer
–Use simplified version of the scene geometry
§Conservatively scale down
–To make it fit into SPU memory
–To make it faster to test against
§Test all objects against small depth buffer
–Test bounding boxes

Wed, October 12, 2011

We chose to try software rasterization running completely on SPUs.

We render the simplified version of the level geometry
 into a depth buffer (these are the occluders)

And we then use scaled down version of this depth buffer
 to test visibility of all objects or lights in the current view frustum.
 The test itself uses bounding box of the objects.

Why software rasterization
§Previous solution did not scale well
–Manually placed portals

Wed, October 12, 2011

I'll try to summarize the reasons why we chose this solution
 and I'm sure you recognize some of your own experiences here.

First and foremost we saw that our solution based on portals
 does not scale well with the big outdoor levels.

Especially since our portals were hand placed by artists and we were
 running into production stalls.

 Very important issue if you try to create the game in two years.

Why software rasterization
§Previous solution did not scale well
–Manually placed portals
§Works automatically
–Can be enabled early in production

Wed, October 12, 2011

The process of occluder creation can be made largely
 automatic and can be enabled from the early days of production.

The whole concept of occluders is very similar to building
 of regular geometry and it's easy to understand by artists.

This makes it very easy to step in and manually create occluders where needed.

Why software rasterization
§Previous solution did not scale well
–Manually placed portals
§Works automatically
–Can be enabled early in production
§Completely dynamic solution
–Any object can become an occluder

Wed, October 12, 2011

Unlike most other approaches, this one is completely dynamic.

Any sufficiently large object on screen can serve as a good occluder.
 If you're hiding behind a destructible barrel or a metal plate in our
 game, it is an occluder.

Doors can open and close and they perfectly block the visibility
 without you having to write special code for such case.

Why software rasterization
§Previous solution did not scale well
–Manually placed portals
§Works automatically
–Can be enabled early in production
§Completely dynamic solution
–Any object can become an occluder
§Maps well to SPUs
–No sync issues
–No GPU costs related to visibility testing

Wed, October 12, 2011

Software rasterization maps well onto SPUs - it's easy to distribute
 and SPUs are generic enough to allow us to run complicated object culling logic.

And unlike GPU based solutions, you get exact results
 within the same frame without complicated synchronization logic.

Wed, October 12, 2011

Let’s look at the example of how the occlusion system works.

Wed, October 12, 2011

Let’s look at the example of how the occlusion system works.

Wed, October 12, 2011

If we look from the side, you see we don’t
 render anything behind the closed door.

But as soon as the door open...

Wed, October 12, 2011

...we start to render the rest of the visible scene.
 As I mentioned earlier, this
 happens entirely automatically.

And since I forgot to record the occlusion
 depth buffer, you’ll have to trust on this one.

Implementation overview

Wed, October 12, 2011

We implemented the system as series of SPU jobs.
 Most run in parallel to do the heavy lifting.

Occluder setup
§First stage, not parallel
§Outputs clipped + projected triangles
–One list of triangle data
–One “index” DMA list per rasterizer job
§Caches are important at this stage
–2KB vertex array cache (90% hit rate)
–32-entry post-transform cache (60% hit rate)
–Various double-buffered output caches

Wed, October 12, 2011

The first SPU job loads visible occluder primitives and
 outputs clipped and projected triangles for rasterization.

A single list of triangles is shared between the rasterizer jobs, and each job
 has its own DMA list pointing to the subset of triangles it needs to draw.

The occluder primitives are identical to visual meshes, with vertex and index arrays.
 Therefore we introduced several caches to
 reduce bandwidth and vertex transformation costs.
 This setup is very similar to what you find in a GPU.

Rasterization
§Split 640x360p depth buffer into 16 pixel-high strips
–Rasterize in parallel, one SPU job per strip
–Load triangles using the prepared DMA list
§Traditional scanline rasterizer
–Fill internal 640x16 floating point depth buffer
§Vectorization is the key
–Set up three or four edges at once
–Generate 4x1 pixels at once
–Optimize in assembly

Wed, October 12, 2011

We split our depth buffer into 16-pixel-high strips and
 run one rasterize job per strip in parallel.

Each rasterize job loads the list of triangles that intersect with its
 strip using the DMA list prepared by the setup job.

We perform standard scanline rasterization
 into an internal floating point buffer.

The rasterize jobs are compute-bound, and the code is
 extensively vectorized to improve throughput.
 Inner loops are written in SPA assembler.

Rasterization
§Compress depth buffer
–One output pixel is maximum depth of 16x16 block.
–But patch single pixel holes first.

–Encode as uint16, reserve 0xffffu for infinity
§Output single scanline of 40x23 occlusion buffer

Wed, October 12, 2011

For output, we conservatively compress the depth buffer.
 Each output pixel is the maximum depth value of a 16x16 pixel tile in the depth buffer.

Before compression, we patch single pixel holes to avoid leaks
 when the occluders are not water-tight.
 This is a bit of a cheat, but it’s necessary otherwise
 such hole pushes the tile way into the background.

The last step encodes depth into 16 bits,
 Occluder frustum is shorter than visual frustum so we
 reserve one bit for points behind occluder far plane.

Occlusion tests
§Tests happen in parallel
§Each object consists of one or more parts
§First test object bounding box
–Skip for objects visible last frame
§Then test individual parts
§Continue with submesh culling
–Small Spatial Kd-Tree inside most meshes
–Allows for culling arbitrarily small mesh chunks

Wed, October 12, 2011

The last step is the actual visibility testing.
 We have one job that gathers all objects in the camera frustum
 and then spawns an occlusion test job for each batch of objects.

We have a two level hierarchy of objects and meshes
 objects live in the scene, and meshes are what we send to the GPU.
 We test objects first to avoid testing meshes.

If a mesh has many triangles, we can continue with submesh culling.
 This uses the mesh’s Kd-tree to cull away whole ranges of mesh triangles.
 Visible meshes form new primitive sent to GPU.

The output of these jobs is the final result of the occlusion query, and is sent for rendering.

Occlusion tests
§Accurate tests
–Bounding box rasterization and depth test
–Working on small depth buffer, be conservative
§Fast bounding sphere tests
–Precomputed hierarchical reject data
–Constant time test for small spheres
–Only used for fast reject

Wed, October 12, 2011

We have two kinds of visibility test we can use to cull objects and parts.

The basic test is the most accurate, but also the most expensive.
 It rasterizes a bounding box with depth testing against the small occlusion buffer.

We also have constant-time tests for small objects.
 We precompute several versions of the occlusion buffer by
 conservatively dilating the depth values.
 This allows us to perform very quick bounding sphere tests.

If an object passes the fast test, or if it is too large, we do the accurate test.

Generating good occluders

Wed, October 12, 2011

In the final part of the presentation I’d like
 to explain how we create occluders.

Where to get occluders
§Aiming for automated solution
§Originally wanted to use scene geometry
–Reduced polygon count
–Too many errors, in general does not work
§ Now using physics mesh
–Closed, low polygon meshes
–Not always conservative in the right sense
–Visual mesh can be inside physics mesh causing drops

Wed, October 12, 2011

We didn’t want artists to hand-make occluders
 for the entire level, so we looked for an automatic solution.

We experimented with using visual meshes,
 but the good polygon reduction proved
 to be difficult to get right.

Physics mesh is much better choice.
 It’s available for each mesh in the game
 and it’s cleaned and sufficiently low polygon count.

Unfortunately the physics meshes can be slightly larger
 than visual meshes causing objects to disappear.
 Worst offenders have to be fixed manually.

Where to get occluders

Wed, October 12, 2011

Here’s an example of occluders
 generated automatically from physics mesh.
 You can notice there’s some unnecessary detail,
 but in general the quality is pretty good.

How to select good occluders
§Simple heuristics to identify good occluders
–Discard anything which is small
–Discard by meta data
–clutter, set dressing, foliage, railings…

–Discard if surface area is significantly smaller than
bounding box surface area

§Artists can override the process
–Still creating the best occluders by hand

Wed, October 12, 2011

Even using physics mesh there was too much occluder geometry.

We needed to reject occluders that were unlikely to
 contribute much to the occlusion buffer.
 Our simple heuristics rejects all small objects or
 objects where the name suggests that they are not good occluders.

We also reject meshes whose surface area suggests
 that they are thin or with too many holes.

Artists can of course step in and override the heuristics
 or provide their custom occluders for difficult cases and optimization.

Artist generated occluders

Wed, October 12, 2011

Here’s an example of KZ3 multiplayer level where the
 automatic heuristics did not work well.

Artist generated occluders

Wed, October 12, 2011

And here’s the highly optimized occluder mesh created by artist.

Conclusion
§Software rasterization is great
–Fast on SPUs
–Easy to integrate
–Very accurate (if occluders are accurate)
§Creating occluders is hard
–Automatic system was not enough
–Plan for this in content creation
–Define workflow for finding and fixing leaks
§Voxelization anyone?

Wed, October 12, 2011

We like this system, it’s simple, efficient and fits well with our pipeline.

Unfortunately the content creation proved to be a problem.
 The automated solution did not work well enough in some cases
 and artists had to create custom occluders for entire levels.
 Luckily the geometry is easy to create.

Using scene voxelization might be a good way
 to generate simple, robust occluders automatically.

Conclusion
§Special thanks to Will Vale (Second Intention Ltd) for
implementing this system for us.

Wed, October 12, 2011

I’d like to thank Will Vale for implementing the
 system for us and help with this presentation.

Statistics
§100 occluders, 1500 triangles
§Test 1000 objects, 2700 parts
§Timings
–Setup job: 0.5ms
–Rasterize job: 2.0ms (on 5 SPUs)
–Query job: 4.5ms (on 5 SPUs)
–Overall latency: ~2ms

Wed, October 12, 2011

Questions?

