






















This is a brief overview of the Hierarchical Task Network planning process. The planner solves a problem by hierarchical decomposition of abstract tasks into concrete actions.

The planner is given an abstract task: something that is not complete and descriptive enough to act upon. As a toy example, consider the task: “eat fruit”, where “fruit” is a parameter of the abstract task “eat”. 
The planner takes this abstract task and recursively breaks this down into smaller sub-problems until finally you are left with a concrete plan of actions.

What we call the planning domain is a collection of methods for breaking down these tasks. A method consists of a number of possible replacements for a task, called branches. The branches are considered in-
order from top to bottom. Our example may have branches for eating something in our possession, getting it from our house or buying it in a store.



Each branch consists of preconditions and a set of replacement tasks. These replacement tasks can be abstract or concrete. The preconditions are stated declaratively. For example our ‘in possession’ branch 
preconditions may state: I have an item X, such that X is edible and X is of the given type. This example only uses an and statement, but we allow for nested and / or / not statements.

The preconditions are evaluated by running a problem solver. The solver searches for facts in the world state that match the terms of the preconditions. As it is searching it will assign values to variables. If the 
solver fails to find a matching fact for a term it will backtrack and try a different substitution for the previous term of the precondition. In our example the solver may first attempt our wallet and find that it is not 
edible. Next it could consider our sandwich, but that is not a fruit. Finally it may settle on a banana, which is both edible and a fruit.



The planner then replaces the original abstract task with the set of tasks of the branch. These tasks can reference the variables of the preconditions. In our example this could be: take the banana, prepare it for 
eating and finally eat it.

The exclamation mark indicates that this is a concrete task. The preparation task is abstract and requires further refinement. In case of our banana it will need to be peeled, but a sandwich would need to be 
unwrapped.

In this case we found a solution and the process will continue recursively, but if no valid solution is found the planner will try the different branches. If those also fail and there is no valid replacement for a task, 
the planner will backtrack the recursion to where that task was added and try a different solution there.












































