orizon Zero Dawn

-

Y Machine Ecology

« Machines coexist in mixed groups

« Each class serves a function
— Acquisition
— Transport
— Scavengers
— Reconnaissance
— Combat

« Composition affects behavior

Y Agent Hierarchy

- Machine herds organized hierarchically Group
— Previously: strategic, tactical, individual
— Now: flexible, dynamic hierarchy
Individual agent
— Controls a character
— Observes world through perception model
« Group agent
— No physical manifestation Individial
— Coordinates agents

Individual Group

Y Agent Hierarchy

Blackboard

Machine herds organized hierarchically Group
— Previously: strategic, tactical, individual

— Now: flexible, dynamic hierarchy
Individual agent

— Controls a character

— Observes world through perception model
Group agent

— No physical manifestation Ievicel | = as
— Coordinates agents
Communication

— Blackboara

Blackboard

Individual Group

Y Agent Hierarchy

Machine herds organized hierarchically Group
— Previously: strategic, tactical, individual
— Now: flexible, dynamic hierarchy
Individual agent
— Controls a character
— Observes world through perception model
Group agent
— No physical manifestation Individial
— Coordinates agents
Communication

— Blackboarad
— Direct messaging

Individual Group

-/

The Agent

« Groups and individuals use same core
decision process

Daemons

World
state

HTN
planner

Plan

Y

The Agent

« Groups and individuals use same core
decision process
- Daemons provide knowledge, e.g.

— Individual: body state, perception
— Group: hierarchy

— Common: messaging, memory

- On-demand queries, such as path finding
— Parameters only apparent during planning

Daemons

Facts

World
state

HTN
planner

Plan

On-demand queries
e.g. path finding

Functions

Memory

Y

« Groups and individuals use same core

The Agent

decision process
Daemons provide knowledge

World state consists of facts
— Flexible data representation

— Tuple of variable type elements, e.g.
- |dentifier
« Integer, floating point
« Object pointer
- Lists, can be nested

Daemons

World
state

Facts

HTN
planner

Plan

(position (1 2 3))
(eventimpact ...)

Y

The Agent

Groups and individuals use same core
decision process

Daemons provide knowledge
World state consists of facts

Hierarchical Task Network makes a plan

— Solves a problem by hierarchical
decomposition of an abstract task into
concrete actions

Daemons

World
state

HTN
planner

Actions

Plan

™ ™ This is a brief overview of the Hierarchical Task Network planning process. The planner solves a problem by hierarchical decomposition of abstract tasks into concrete actions.
H I N I n r I e The planner is given an abstract task: something that is not complete and descriptive enough to act upon. As a toy example, consider the task: “eat fruit”, where “fruit” is a parameter of the abstract task “eat”.
The planner takes this abstract task and recursively breaks this down into smaller sub-problems until finally you are left with a concrete plan of actions.

What we call the planning domain is a collection of methods for breaking down these tasks. A method consists of a number of possible replacements for a task, called branches. The branches are considered in-
order from top to bottom. Our example may have branches for eating something in our possession, getting it from our house or buying it in a store.

Methods recursively refine abstract tasks
into concrete tasks

Method

Branch

Abstract
task Branch

Branch

/ _ .
(eat fruit) Method: (éat ’type) V-
Branches:

T In possession
a parameter Get from house

Buy in store

Y

HTN in brief

Each branch consists of preconditions and a set of replacement tasks. These replacement tasks can be abstract or concrete. The preconditions are stated declaratively. For example our ‘in possession’ branch
preconditions may state: | have an item X, such that X is edible and X is of the given type. This example only uses an and statement, but we allow for nested and / or / not statements.

The preconditions are evaluated by running a problem solver. The solver searches for facts in the world state that match the terms of the preconditions. As it is searching it will assign values to variables. If the
solver fails to find a matching fact for a term it will backtrack and try a different substitution for the previous term of the precondition. In our example the solver may first attempt our wallet and find that it is not
edible. Next it could consider our sandwich, but that is not a fruit. Finally it may settle on a banana, which is both edible and a fruit.

Methods recursively refine abstract tasks Problem solver finds possible solutions to
into concrete tasks branch preconditions
1 | |
Method Branch
Branch Preconditions Frelslem
solver
Abstract |
task Branch Tasks
Branch
World state
(eat fruit) Method: (eat ?type) Branch:in possession Solution A
Branches: Preconditions:
In possession (item ?x) (item wallet)

Get from house (edible ?x) {ediblewaltlet)

Buy in store (type ?x ?type) (type wallet fruit)

Solution B

Solution C

Solution B

(item sandwich)
(edible sandwich)

; o £t

Solution C

(item banana)
(edible banana)
(type banana fruit)

Y

HTN in brief

The planner then replaces the original abstract task with the set of tasks of the branch. These tasks can reference the variables of the preconditions. In our example this could be: take the banana, prepare it for
eating and finally eat it.

The exclamation mark indicates that this is a concrete task. The preparation task is abstract and requires further refinement. In case of our banana it will need to be peeled, but a sandwich would need to be
unwrapped.

In this case we found a solution and the process will continue recursively, but if no valid solution is found the planner will try the different branches. If those also fail and there is no valid replacement for a task,
the planner will backtrack the recursion to where that task was added and try a different solution there.

Methods recursively refine abstract tasks
into concrete tasks

Problem solver finds possible solutions to
branch preconditions

Branch tasks are instantiated using the
variables from the preconditions

1
Method
Branch
Abstract
task Branch
Branch
(eat fruit) Method: (eat ?type)

Branches:
In possession
Get from house
Buy in store

Branch

Problem

Preconditions
solver

Tasks

World state

Branch:in possession Solution
Preconditions:

(item ?x) (item banana)
(edible ?x) (edible banana)
(type ?x ?type) (type banana fruit)

Branch tasks

Solution Task
Task
Replacement tasks:
concrete task

abstract task ('take banana)
\(prepare banana)

(leat banana)

Y The Agent

« Groups and individuals use same core
decision process

- Daemons provide knowledge
- World state consists of facts
« Hierarchical Task Network makes a plan

« Execute sequence of actions
— Individuals: move, look, speak, etc.
— Groups: communicate, make subgroup, etc.

Daemons

World
state

HTN
planner

Actions

Plan

Y The Collective

Collective agent is the root group Collective
All new individuals added to it
Creates groups for compatible individuals

Individuals provide passport
— Equality determines compatibility

Passports:

Individual A : (machine ...)
Individual B : (machine ...)
Individual C : (hacked machine ...)

Y The Collective

« Collective agent is the root group Collective
« All new individuals added to it
- Creates groups for compatible individuals

« Individuals provide passport Group Group
- Opaque tuple
— Equality determines compatibility
- Creates main groups

- Assigns individuals

o Individual
Individual

Passports:

Individual A : (machine ...)
Individual B : (machine ...)
Individual C : (hacked machine ...)

Y The Collective

- Collective agentis the root group Collective

« All new individuals added to it

- Creates groups for compatible individuals

« Individuals provide passport Group Group
- Opaque tuple
— Equality determines compatibility

- Creates main groups

- Assigns individuals

Reassigns if passport changes Passports:
Individual A : (machine ...)
Individual B : (hacked machine ...)
Individual C : (hacked machine ...)

—> |ndividual

Y A Relaxed Herd

Mix of acquisition and combat machines

Collective
« Acquisition group will take center
« Defense split in sections around outside
. Patrol paths are generated hlere
— Avoid passing through stealth vegetation
— But pass nearby, allow player opportunity to Sector Acqlilsition

hack or trap deamas

- Systemic solutions help fill a large open
world

Going To Combat

Individuals are eyes and ears of group

In principle limited world knowledge
— Take out machine before it alerts the group
— Don’t know what you can’t see
— Not strictly enforced if it benefits gameplay

When alerted create specialized groups
— Acquisition machines flee
— Combat group per enemy

Specialized groups limit complexity
Multiple roles exist within group

Collective

Herd

Combat

coordinator Flee group

Combat
group

Role Distribution

Role defined by identifier and context Distributor
— Examples: attacker, scavenger, searcher, etc. Group
— Context is a tuple, contents specific to role

Roles are requested by groups
Optional distributor component handles

; Group Group
assignment
— Assigns roles for itself and recursively
Goal: find the right individual for the job
Group

— Distribute combat machines over enemies
— Who will scavenge, who will patrol
— For some roles many factors weigh in

-/

Role Distribution Process

« All groups request roles with
priority and limit
« Forallrolesin order of priority

— Query all candidate individual’s utility
for that role
« Solved by individual’s HTN domain

« Proximity, type of machine, knowledge of
target, being attacked by target

— Assign best candidate

Priority Limit
0.9 1

0.8 1

0.6 inf
0.6 inf

Individual Utility

WatcherA 0.5
Watcher B 1

Ravager 0./

Role
attacker
attacker
combatant

combatant

Reasons

Context
player ...
enemy_a ...
enemy_a ...

player ...

pretty close, but not in view

do not know this target

In view, bigger machine

Y

Role Distribution Process

_ Priority Limit Role Context
« All groups request roles with
pI’IOI’Ity and limit —> (0.8 1 attacker enemy_a ...
« Forallrolesin order of priority 06 inf combatant enemy_a ...
for that role
« Solved by individual’s HTN domain
« Proximity, type of machine, knowledge of
target, being attacked by target Individual Utility Reasons
— Assign best candidate WatcherA 0.4 quite close
— If limit reached: next role —> WatcherB 0.6 quite close, angry at target

WatcherC -1 knocked down

Role Distribution Process

_ Priority Limit Role Context
All groups request roles with
priority and limit
For all roles in order of priority —>» 0605 Inf combatant enemy_a ...
— Query all candidate individual’s utility 0.6 e combatant olayer ...
for that role
« Solved by individual’s HTN domain
« Proximity, type of machine, knowledge of
target, being attacked by target Individual Utility Reasons
— Assign best candidate WatcherA 0.4 quite close
— If limit reached: next role —> WatcherC 0.7 very close
— If not: group updates priority Grazer -1 not a combat machine

« Useful for spreading over multiple groups

Y Choreographing Combat

- Role distribution used to minimize chaos
— Spread machines over targets

— Choose a fair attacker for the player, consider
« Machine awareness and state
« Player awareness
« Proximity and aggressiveness
« Damage received and dealt
« Etc.

- Attack selection also utility based
— Integrated into HTN preconditions

— Aims for variety, challenge and opportunities
for the player Av

AVAY Vavk:
VAVAVA

Y

Perception Model

Individuals have sensors
Observable objects have stimuli

Sensor and stimuli types
— Common: visual, aural, touch

— Special: smell, radar, proximity y 9 .
Observation strength depends on AL

~ Sensor sensitivity A N

— Stimulus size / loudness \ /

Y

Stimuli

« Stimuli carry information packets, e.g.
— Enemy description
— Arrow impact / whizzing by
— Carcass

« Handler interprets information
— Configurable per individual
— Rabbit could infer less than human

— Low observation strength can reduce
information

/O

Visual perception

Y

Navigation

« Previous offline process not desirable for open world workflow
— Need traversal between all areas
— More designers and artists working on same content
— Offline navigation graph would often be out of date
— Also: cumbersome to deal with dynamic terrain

« Largevariety agent sizes and capabilities to consider
— From human size to big as a house
— Breaking through trees and rocks
— Some machines can also swim
— Some machines can also fly

« Solution: runtime generation of multiple navigation meshes

Navigation

Runtime generation of navigation mesh
— Fast, iterative designer workflow: never out of date

— Only depends on collision geometry
— Available anywhere, generated in activity bubble
— Dynamic environments require no additional effort

Updates when collision changes

Six different meshes
— Small/Medium / Large / Extra large machine
— Special cases: player mount and swimming machine

Y

Areas and Obstacles

« Hulls represented on navigation mesh
« Relevance depends on query cost function
« QObstacles

— Hard or soft blocking : impassable or undesirable

— Depends on machine type and state
« Don’t break through trees unless large and angry enough

« Restrictions
— Confine to activity bubble or designed hull
« Stealth vegetation

— Avoid unless in combat

« Danger areas
— Avoid path of machine attacks

tion

Naviga

=
Im
e

Naviga

The team:

Jose Antonio Escribano Ayllon Robert Morcus

Julian Berteling Marco Pisanu

Ivaylo lvanov Carles Ros Martinez
Wouter Josemans Pieter van de Kerkhﬁ g,
Hylke Kleve Tim Verweij

- HorizoN A

ZERO DAWN-® Bl s ATV

