
By Tim Verweij, student number 1204955.
For the degree of Master of Science in Artificial Intelligence
with the specialization of Intelligent Internet Applications.
Completed August, 2007.

Internal supervisor
Dr. Martijn Schut
Artificial Intelligence Section
Department of Computer Science
Faculty Of Science
Vrije Universiteit of Amsterdam

External supervisor
Drs. Remco Straatman
Lead Programmer
Department of Artificial Intelligence
Guerrilla B.V.

A hierarchically-layered
 multiplayer bot system
for a first-person shooter

 i

 ii

Abstract

Each new generation of computer game consoles is characterized by increased
computational power. Game developers are using this power to create games which
are more beautiful and more realistic (often in a Hollywood movie kind of way) than
their predecessors. Game AI developers have seen their memory and cpu budgets
increase as well. The AI of first-person shooter games has increased in complexity,
allowing for more entertaining and more life like behavior of the computer controlled
enemies and allies. Although new AI systems bring new opportunities, they also come
with new challenges. Previously successful, well known techniques may not be
applicable anymore to new situations.

Computer game developer Guerrilla developed the first-person shooter Killzone
(2004) for the PlayStation 2. Currently Guerrilla is working on the game’s successor
Killzone 2, which will be released on the PlayStation 3 platform sometime in 2008.
Killzone 2 improves upon Killzone in many ways, including the AI. Where computer
controlled soldiers in Killzone behaved according to fixed sequences of actions
augmented by a behavior priority mechanism based on heuristic evaluations of the
soldier’s current context, Killzone 2 uses a specialized planner to construct these
sequences dynamically, based on more detailed evaluation of the soldier’s context by
means of logical expressions.

Killzone included a number of multiplayer game modes, such as Assault and
Domination. AI developers added relatively simple multiplayer bot AI for these game
modes as well. Successor Killzone 2 also contains a multiplayer element with several
game modes, some of which are similar to the ones found in Killzone. This thesis
describes the results of an explorative study on Killzone 2’s AI system. The study aims
to answer how the Killzone 2 AI system may be used to create an extensible
multiplayer bot architecture that supports the development of challenging and
entertaining multiplayer bot AI which improves upon the AI of Killzone in the use of
cooperative behavior.

We propose a hierarchically structured system to control the multiplayer bots, using
one AI commander for each faction1, each commanding several group leaders, each
commanding several individual bots. We evaluate the system on the basis of a fully
implemented AI for one of the multiplayer game modes.

Acknowledgements

This document is the final product of my time as intern researcher at Guerrilla, from
January 2006 to August 2006. Part of this research was done in cooperation with
Johan van der Beek, who also worked as an intern at Guerrilla during that time. As a
result of this cooperation, the sections 1.1, 1.7 and the chapters 2 and 3 of this thesis
were written together.

I would like to thank my internal supervisor Martijn Schut of the Vrije Universiteit of
Amsterdam and my external supervisor Remco Straatman of Guerrilla for their support,
ideas and constructive criticism, Johan van der Beek for his cooperation and humor,
the other AI coders especially Arjen Beij and Robert Morcus for coding support, Eric
Boltjes for teaching me some Maya, all participants of the multiplayer bot test rounds
for their feedback and last but not least, I would like to thank my parents for their
immense support.

1 In the context of a first-person shooter, factions denote opposing groups. In Killzone, there are two factions: the Helghast and
the ISA.

 iii

Contents

1 Introduction___ 1

1.1 Contemporary FPS AI ___ 1
1.1.1 The purpose of a computer game __ 1
1.1.2 Planning techniques __ 2
1.1.3 Scripting versus autonomy ___ 3
1.1.4 Cooperative behavior ___ 3

1.2 Scope __ 3
1.2.1 Multiplayer games __ 4
1.2.2 Bot AI versus single player AI ___ 4
1.2.3 Adapting to human players ___ 5
1.2.4 Domination & Capture and Hold ___ 5

1.3 Objective__ 6

1.4 Motivation ___ 7

1.5 Deliverables ___ 7

1.6 Evaluation___ 7

1.7 Guerrilla __ 8

2 Related work __ 9

2.1 Techniques used in applications ______________________________________ 9
2.1.1 Quake III Arena __ 9
2.1.2 NOLF 2 ___ 10
2.1.3 FEAR___ 11
2.1.4 Halo 2 __ 12

2.2 Academic work__ 14
2.2.1 Soar Quakebot for Quake 2 ___ 14
2.2.2 SHOP HTN Unreal Tournament bot ___ 15
2.2.3 Observe & adapt __ 15

2.3 Summary___ 16
2.3.1 Decision systems__ 16
2.3.2 Coordination systems __ 17

3 Guerrilla FPS AI __ 18

3.1 Killzone __ 18
3.1.1 Goals and Skills___ 18
3.1.2 Combat Situation and Alert Level ___ 19
3.1.3 Waypoints and areas___ 20
3.1.4 Position picking and path finding__ 20
3.1.5 Order priority ___ 21
3.1.6 Squads ___ 22
3.1.7 Bot AI for Domination games in Killzone______________________________________ 23

3.2 Killzone 2 __ 24
3.2.1 Planning using Hierarchical Task Networks ___________________________________ 24
3.2.2 HTN planning in Killzone 2 __ 25
3.2.3 HTN Planner communication with the C++ code _______________________________ 26
3.2.4 Applying HTN planning to a dynamically changing environment ___________________ 27

4 Technical design__ 28

4.1 Design overview___ 28

4.2 Faction leader design __ 28

4.3 Squad leader design ___ 29

 iv

4.3.1 Types of squad behavior __ 29
4.3.2 Squad tasks__ 30
4.3.3 Required information ___ 30
4.3.4 Squad communication__ 31

4.4 Individual design __ 31

5 Implementation ___ 32

5.1 Faction leader implementation _______________________________________ 33
5.1.1 Strategy Parameter Manager __ 35
5.1.2 Mission Strategy Executive __ 36
5.1.3 Group Manager ___ 37
5.1.4 Callbacks__ 38

5.2 Squad leader implementation__ 39
5.2.1 Squad Daemons __ 40
5.2.2 Squad HTN Domain ___ 42
5.2.3 Non-planned coordination ___ 43

5.3 Individual implementation___ 43

6 Evaluation ___ 44

6.1 Test rounds___ 44
6.1.1 Test rounds setup ___ 44
6.1.2 Feedback questions ___ 44
6.1.3 Results test rounds __ 45

6.2 Strategy comparison ___ 47
6.2.1 Implementing the Killzone Domination strategy for Killzone 2 _____________________ 47
6.2.2 Performing strategy comparison __ 48
6.2.3 Results strategy comparison___ 49

6.3 System extensibility__ 50
6.3.1 Extending the AI for Capture and Hold _______________________________________ 50
6.3.2 Adding AI for another game mode __ 51

7 Conclusion __ 52

7.1 Objective___ 52
7.1.1 Multiplayer bots for Killzone 2 __ 52
7.1.2 Using the HTN planner for multiplayer bots ___________________________________ 52

7.2 Deliverables __ 53

7.3 Evaluation__ 53

7.4 Future work___ 54
7.4.1 System improvements__ 54
7.4.2 Better use of cover __ 55
7.4.3 Squad movement ___ 55
7.4.4 More variety in strategies ___ 55
7.4.5 Improved use of game feedback__ 55
7.4.6 Level dependent tactics / strategies ___ 56

8 References __ 57

As stated in the acknowledgements, some sections of this thesis were written in collaboration with Johan van der Beek, who wrote his Master’s thesis [1] during
the same period. Johan van der Beek and Tim Verweij each wrote a part of the sections. The sections mentioned below appear identically (for the most part) in
both theses. Below a specification of the division of the sections is given. All sections that are not mentioned below appear in this thesis only and are all written
by Tim Verweij.
Sections written by Tim Verweij: 1.1.2 - 1.7 - 2 - 2.1.1 - 2.2 - 2.2.1 - 2.2.2 - 2.2.3 - 3 - 3.1 - 3.1.1 - 3.1.4 - 3.1.6 - 3.2 - 3.2.1 - 3.2.2
Sections written by Johan van der Beek: 1.1 - 1.1.1 - 1.1.3 - 1.1.4 - 2.1 - 2.1.2 - 2.1.3 - 2.1.4 - 2.3 - 2.3.1 - 2.3.2 - 3.1.2 - 3.1.3 - 3.1.5 - 3.2.3 - 3.2.4

 1

1 Introduction

Each new generation of computer game consoles is characterized by increased
computational power. Analogously, first-person shooter game software, including their
AI systems have increased in complexity, allowing for more entertaining and more life
like behavior of the computer controlled enemies and allies. Computer game developer
Guerrilla is currently working on Killzone 2, which improves upon Killzone in many
ways, including the AI. Killzone 2 uses a specialized planner to construct sequences of
actions for each AI controlled soldier dynamically, based on a detailed evaluation of the
soldier’s context within the game.

Like Killzone, Killzone 2 includes a number of multiplayer game modes.. This thesis
describes the results of an explorative study on Killzone 2’s AI system. The study aims
to answer how the Killzone 2 AI system may be used to create AI for multiplayer bots,
making them entertaining and challenging, emphasizing on improved cooperative
behavior compared to multiplayer bot AI of Killzone.

1.1 Contemporary FPS AI

First-person shooter (FPS) is a genre of computer games which is characterized by an
on-screen view that simulates the in-game character's point of view and a focus on the
use of handheld ranged weapons [7]. With each generation of FPS games, more
powerful AI systems are designed and implemented to make the behavior of the Non-
Player Characters2 (NPCs) more diverse, lifelike and enjoyable for the player. To make
NPCs in FPSs behave as realistic and human-like as possible, contemporary FPS AI
developers have given each individual NPC a ‘mind’. There is no global AI ‘mind’
controlling the individual decisions an NPC makes. However, AI that manages
cooperation between NPCs might be global (See sections 2.1 and 2.2).

1.1.1 The purpose of a computer game

A computer game is not to be confused with a computer simulation. A computer
simulation is an attempt to model a real-life or hypothetical situation on a computer so
that it can be studied [35]. Therefore, the main focus of a simulation is to imitate reality
as much as possible. The main goal of a computer game, however, is entirely different.
Even though a game tries to pursue realism and world consistency, the game’s primary
purpose is to please the player that plays the game. Therefore, the player is the most
important concept to be regarding when making a game. In FPS AI particularly,
developers usually maintain a few rules of thumb regarding the realization of fun of the
player. Below some of those rules are given [8].

Do not try to beat the player
While developers of AI chess computers continuously try to find methods in order to
beat human chess players3, beating players in FPS contributes to those players’
frustration rather than the feeling of competition. When the AI constantly beats the
player, whether the AI is cheating or not, the player regards the AI’s game play as
being unfair. While chess has strict rules to which the computer and the player have to
comply to, the AI in a computer game can easily cheat and take advantage of
information a player could never have, e.g. knowing the player’s position on the game
field even if the AI cannot visually perceive the player [8].

2 The terms NPC, agent, soldier, individual, squad member or the AI are used interchangeably in this thesis.
3 The defeat of the human chess master Kasparov by chess computer Deep Blue was seen as prestigious.

 2

The AI must be predictable
The player must be able to understand the AI’s decisions. The strategies the AI uses
should be recognizable and predictable, so the player knows how to react to a certain
strategy. Imagine an FPS where the AI would be smart enough to learn a new strategy
every match. The player would never be able to defeat the AI, because the AI is
unpredictable. When a player learns the strategy of the AI and figures out how to
respond to that behavior, the AI changes its behavior and makes it impossible for the
player to counter the AI’s strategy. Unpredictability is frustrating for the player, because
the player cannot determine how to react [8]. Hence, in commercial FPS AI, academic
studies as Machine Learning [21], Evolutionary Methods [22] and Neural Networks [23]
are generally considered less suitable for implementation than AI methods that
produce predictable NPC behavior. Another reason than unpredictability is quality
assurance. When using such system, the AI could become ‘too smart’. For instance, if
the AI gets the opportunity to prevent a player from finishing a level by blocking a door,
so the player cannot advance to the next level, the game lacks quality. Another
example is that at a certain point in time a friendly NPC has to tell plot critical
information to the player, so the player knows the weakness of the final enemy of the
game and is able to defeat him. However, the NPC has learned from previous games
that some time after telling the plot critical information, he gets shot for telling this
information to the player. The NPC decides that it is better not to tell the player the
information in order to prevent himself from being shot, leading to the fact the player is
unable to defeat the final boss.

Be sure what to show in front of the player
When the AI performs a maneuver, it should be performed in the player’s field of view.
When a maneuver is performed while the player is looking the other way, it makes no
difference if the maneuver ever took place at all in the player’s sense. Even if the
outcome of the maneuver is still visible and persistent in the game world, the player
might even be puzzled why the world changed in his absence. On the other hand, the
AI should not stand in the player’s line of sight blocking its view and line-of-fire to a
possible threat [33].

1.1.2 Planning techniques

To bring the NPCs to life, AI developers have various tools at their disposal. With the
arrival of faster computers, the techniques that are used to build the ‘minds’ of the
NPCs have grown in complexity. Until some years ago, the AI of NPCs in FPS games
consisted primarily of fixed sequences of actions (fixed plans) [30]. These sequences
of actions are often implemented as a Finite State Machine (FSM), a tool to model
behavior composed of states, transitions and actions [6] (See section 2.1.1). The
behavior of NPCs may be controlled by several of these FSMs; each of them
specialized in accomplishing a specific goal. On top of this palette of behaviors, a
selection mechanism decides which of the available goals is most important, thereby
selecting which of the available behaviors should become active.

A more recent development in FPS AI is the use of planning techniques (see
sections 2.1 and 3.2) [30]. These techniques enable NPCs to construct a sequence of
actions based on the context (e.g. presence of enemies) and their own state (e.g. how
many bullets they have in their weapon) before executing this sequence. By planning
ahead, NPCs can avoid starting a sequence of actions that cannot be completed.
During the execution of a plan, NPCs may evaluate if the initial assumptions that
started the plan are still valid. Since the planning approach decouples the planning of

 3

actions from the execution of actions (as opposed to the mixed approach in FSMs), AI
developers can add variations in behavior more easily.

1.1.3 Scripting versus autonomy

In game development, scripters have the task to create a story line for the single-player
game environment. This story line is often static and takes the player through different
situations.

The use of planning techniques allows the NPCs to compose their own behavior
sequence, so it gives the NPCs more choices in what to do in a certain situation, i.e.
the autonomy of the NPC has increased. With the increase of autonomy of NPCs,
scripters are relieved of the task of scripting basic behavior when e.g. scripting a
movement route between two locations or ordering the NPC to attack an enemy.
Besides, the use of planning techniques allows the NPCs to compose behavior that is
more complex than basic behavior. Autonomous NPCs do what seems best in a
certain situation. However, the best solution is not always the best when taking the
player into account. For example, when it is best according to an NPC to open a door
to a room and open fire into that room, for game play reasons, it might be better to let
the player open the door. In that case the player feels more important, because he
triggered the fight and feels more in control of the situation. To ensure the player’s fun,
scripters want control over the story line, so scripters often want to be in control of the
NPCs in the story. In these instances, the script can give orders to the NPCs, which get
a higher priority than most autonomous behavior.

1.1.4 Cooperative behavior

An extension to planned individual behavior (see section 1.1.2) is cooperative
behavior. Cooperative behavior emerges when multiple agents perform a task
together. This task can be simple cooperative behavior, e.g. a medic tending a
wounded ally, or the task can be complex, e.g. coordinating multiple agents to attack
enemy units from different sides (i.e. flanking). In FPS AI, the concept ‘squad’ is used
to define a group of agents performing cooperative behavior. In military doctrine a
squad is a cooperative military unit consisting of four to nine members, depending on
nationality of the army. A squad has a squad leader. In FPS games that support
squads, squads can have a squad leader NPC who gives orders to the other squad
members. Squads can have a virtual squad leader, which has no physical entity in the
game, but combines all the squad members’ perceptions and gives orders based upon
reasoning with that information. Chapter 2 discusses these and several more squad
coordination systems.

1.2 Scope

This section defines part of the scope of this research. Subsection 1.2.1 explains the
concept of multiplayer games in the context of a first-person shooter. Subsection 1.2.2
explains the differences between first-person shooter AI for single player games and
for multiplayer games. Subsection 1.2.3 discusses cooperative behavior with human
players and why this feature was left outside the scope. Subsection 1.2.4 contains an
explanation of the two multiplayer game modes that are the focus of this research.

 4

1.2.1 Multiplayer games

Both Killzone and its successor include multiple multiplayer game modes. A multiplayer
game is a game in which more than one person can participate at the same time.
Players either compete against each other (individually or in teams) or cooperate to
achieve a common goal such as defeating a computer controlled enemy. A multiplayer
game mode is defined by a set of rules and regulations that specify game objectives,
win / lose scenarios and conditions for scoring and ranking. Multiplayer games are
played by connecting multiple computers together using a computer network.

For any game mode, points are awarded for killing opponents. However, many
game modes are about accomplishing certain goals in addition to killing the enemy. To
put the focus on the game goals, more points are awarded for accomplishing these
than for making kills. The nature and number of these goals depend on the game
mode and may also be different for the two teams. Game mode ‘capture the flag’ for
example is a symmetric game mode where both teams must attack the other base to
retrieve the enemy flag while guarding their own home base. Here the goals of the two
teams are the same, unlike Killzone’s game mode ‘Assault’. In that game mode one
team has to defend key objectives that the other team has to destroy.

1.2.2 Bot AI versus single player AI

The purpose of single player AI is essentially different from that of multiplayer bot AI.
This is because NPCs found in a single player games play an entirely different role
than bots do in multiplayer games. These differences greatly influence the way bots
should play the game and will therefore be explained in more detail in this section.

Generally speaking, a multiplayer bot has the same rights as a player. Any action
that a player may perform with his or her character is also available to multiplayer bots.

In single player games, the player advances from stage to stage. Whenever the
player is killed, the game restarts at the beginning of that stage. While playing one of
these stages, the player may face many enemies. The purpose of these enemies is to
provide a certain degree of resistance to the player as he or she advances through the
level. As soon as one of these enemies is killed, its task is over and it does not return
to the game. The enemies must be weaker than the player; otherwise, chances are
that the player will not be able to defeat them. This would make it impossible to
advance in the game.

In contrast, multiplayer games are played on one stage only. As the name
suggests, several players play one game simultaneously. Since these games are not
centered on one player, they do not restart when one of the players dies. Instead,
these games continue and the player that died will have the opportunity to rejoin the
game. In this game type, all participants have the same role, therefore all players and
all multiplayer bots have the same amount of ‘health points’. Multiplayer bots may also
use the same weapons as players and they may pick up and use items and weapons
found during the game.

Bots not only have the same rights as players, they should also behave like normal
players. In contrast to the artificial intelligence controlling the NPCs in single player
game modes, bots need information that will help them to move around as far as the
multiplayer level reaches. NPCs in single player game modes generally stick to a
smaller area of operation within a level and do not pursue enemy targets beyond some
predefined barriers or distance limits. Bots are expected to be able to operate on every
spot on the map, just like players. Ideally, bots should know the ins and outs of the
levels they play in, as experienced players will also learn these quickly.

 5

Apart from this, there is also a need for bots to have some sort of world model in
memory. This model should contain information on the (last known) locations of the
various players and other bots. Without this, bots would have to cheat by requesting
the actual position of invisible teammates and enemy targets or they would quickly lose
track of their targets. Bots are always team players and will use this knowledge in their
decision process to find the best course of action given the current situation and team
objective. This means for example that bots may keep defending even though they are
heavily outnumbered.

1.2.3 Adapting to human players

In multiplayer games, bots and players may be in the same team. Bots are not required
to perform complex interactions with players. As a rule of thumb, bots may assume that
players are going to attack and that bots will have to do the ‘more boring’ job of
defense. No higher level reasoning about the intentions of players is required.

Since the bots may be playing on the same side as human players, there is an
opportunity for the bots and human players to cooperate and coordinate their actions.
For this project however, this feature was left outside the scope. The AI of the bots
should not try to guess the plans or intentions of human players. This implies that bots
do not adapt their own actions to fit the actions of human players.

Although bots that adapt their actions to human players may seem like a good idea
at first, there are several reasons for choosing against this ‘feature’. For a start, trying
to guess what the plans or intentions of a human player are just by looking at its
actions is a very complex task. It potentially requires a lot of (CPU) time, which may not
be available. (Every part of the game system, including the AI, has a specific CPU
budget) On top of that, depending on the skill of the human player, the observed
behavior may either be the result of a genius plan or it may just be some random
movement without any goal whatsoever. Even if the bots correctly derive the intentions
of the human player, there are limited ways in which this information can be used to
display smart looking behavior. If the player does not notice the behavior as a reaction
to its own actions, all the effort was in vein. This brings us to the conclusion that the
costs / risks are high, while the benefits are not, eliminating this feature from the
project.

1.2.4 Domination & Capture and Hold

This section explains the rules of the game mode “Domination” found in Killzone, and
the more or less equivalent “Capture and Hold” found in Killzone 2. Both are
multiplayer game modes (see section 1.2.1) intended for network play. Both Killzone
and Killzone 2 feature multiple game modes. Since Domination and Capture and Hold
are the main focus of this research, only these are explained here.

Domination
Domination is a team based game where each team must fight to gain control of
switches that have been placed around the battlefield. [19] The configuration for this
game mode includes a time, points and spawn limit. The game ends when the timer
expires, or the points limit or the spawn limit has been reached. The spawn counter is
raised for each player that enters the game for the first time and for each player that
reenters the game after being killed. Some points are awarded for killing enemy

 6

players. 1 point is scored for each opposing team kill; -1 point for each suicide4; team
kills count as a death for the dead character and -1 point for the killer. The focus of the
game mode, however, is on the switches.

oreSwitchesScKillsIndividualTotalScore +=

To gain control over a switch, players must stand within the capture radius of the
switch and must make sure that no enemy soldiers are within capture range of that
same switch during the capture process. If a team succeeds in keeping away the
enemy long enough, the switch will change ownership to the capturing team. A player
capturing a switch will receive 5 points and 5 points are deducted if the switch is
captured by an opponent. 1 point is earned by the team for retaining ownership of a
switch for 15 seconds. The game ends immediately whenever one of the teams
manages to capture all switches at the same time.

Figure 1: Top view of a Capture and Hold area located on top of
a concrete platform. The capture radius is indicated by a circle.

Capture and Hold
The Capture and Hold game mode changes one main aspect of the game. The
switches, now flagpoles, can be used as spawn locations. Whenever a Capture and
Hold area has been captured, players of the faction that has control over the area may
spawn in that area. Whenever an enemy soldier comes within range of the spawn area,
the area becomes neutral and cannot be used as a spawn area. The scoring system is
identical to domination. The total score of each faction consists of the score obtained
by eliminating enemy units and the score obtained by capturing and holding mission
objectives. In contrast to the Domination game mode, capturing all locations at once
does not end the game.

1.3 Objective

The goal of this study is to deepen the understanding of the Killzone 2 AI system and
its possibilities in creating multiplayer bot AI, compared to the AI of Killzone 1. More
specifically, the study should answer the following question:

4 A player can commit suicide by falling from a great height or by getting hit by his/her own explosives.

 7

How may the Killzone 2 AI system be used to create an extensible multiplayer bot
architecture that supports the development of entertaining multiplayer bot AI which is
more challenging than the multiplayer bot AI of Killzone 1?

In answering this question, it should also answer some questions on the planner
which is part of the Killzone 2 AI system. Are there any clear advantages in using the
planner? Are there any parts of the multiplayer bot system that require planning, or
perhaps parts that are better solved in a more traditional way?

1.4 Motivation

At the end of Killzone's development, multiplayer bots were added to the game. For
each of the game modes, AI was written that allowed the bots to pursue the main goals
of that game mode. Even though some of Killzone’s multiplayer modes coincide with
those of Killzone’s successor, the code for these bots cannot be reused or converted
easily, due to the changes in the AI system. Furthermore, since Killzone's bots were
developed in very little time, their understanding of how the game’s goals can best be
reached is limited. The shortcomings of the bot AI can best be described as how single
player AI soldiers would be playing multiplayer games. Coordination between individual
bots of the same team was either completely missing, or very basic. They did not
operate in groups and their behavior relied primarily on their own observations. This
situation has formed the interest and motivation for the development of a new
multiplayer bot system for Killzone 2 using the new AI techniques and improving upon
the coordination between bots.

1.5 Deliverables

• A multiplayer bot system capable of enabling AI characters to play the various
game modes.

• A single application of this system: a strategy for one of the game modes.

The first deliverable comprises the design and implementation of a generic structure
within the game’s AI system that enables AI developers to implement behavior for each
multiplayer game mode. The second deliverable is an actual application of the first
deliverable to show how it may be used to implement AI for one of the game modes.
The game mode chosen for this project is called Capture and Hold (explained in
section 1.2.4). In a nutshell, it is about securing predefined areas on the map. A more
detailed description of this game mode can be found in section 1.2.4. This game mode
was chosen for two reasons. The first reason is that Capture and Hold is a very tactical
game mode; There are several opportunities and potential benefits in the use of
cooperative behavior (attack / defense). The second reason is that Capture and Hold
features immobile targets (the areas to be captured). This prevents the need for AI
reasoning about moving targets and enables the focus to be on cooperative behavior.

1.6 Evaluation

• Extensible multiplayer bot architecture

In this context, extensible means that it should be possible to extend the system to
incorporate new AI for other game modes and strategies. Even though, for this
project, only one game mode will have a working implementation of the AI, the
design of the framework should support other game modes as well. This ensures a
greater chance that the system will be used eventually.

 8

• Improved strategy over Killzone's AI

This requirement can be split into two sub requirements. Since the Killzone bot AI
did not have much cooperative behavior, this leaves room for improvement. As a
first requirement, the new bot AI system should address this issue. The second
requirement is that the new AI should outperform the old AI. Killzone included a
game mode called domination, very similar to the Capture and Hold in the new
game. The AI code for this game mode should be translated to the new system and
tested against the new system.

• Entertaining bots

This is perhaps the most important requirement of Artificial Intelligence for any
computer game: it should make the game fun to play. Especially for FPS games,
the AI is responsible for a substantial part of the overall game experience; therefore
the AI should be entertaining.

• Challenging for novice players

This requirement is connected to the previous one and to the expected use of FPS
bots. Bots are often used to ‘fill up a game’ and are never expected to be as good
as human players. However, bots that constantly lose are no fun at all; it is not
rewarding to destroy weak opponents. On the other hand, bots should not be too
hard to defeat either. The skill of the bots should be somewhere in the middle;
challenging for novice players.

1.7 Guerrilla

Guerrilla is a game development studio, based in the heart of Amsterdam, the
Netherlands. It was founded at the beginning of 2000 as the result of a merger
between three smaller Dutch game developers, the company now employs 130
developers, designers and artists, encompassing 20 different nationalities. The first
game released by Guerrilla, Shellshock: Nam '67 was developed for PC, Xbox and
Playstation 2 and published by Eidos Interactive. In 2004, Guerrilla signed an exclusive
deal with Sony Computer Entertainment. Under that deal, Guerrilla developed games
exclusively for Sony's consoles5. After the release of Killzone for PlayStation 2 (2004),
the company was acquired by Sony Computer Entertainment in 2005. It went on to
release Killzone: Liberation for PlayStation Portable (2006), and is currently working on
a new Killzone title for PlayStation 3: Killzone 2 [9], [10].

The Killzone game series is about warfare in a futuristic battle zone. In its games,
Guerrilla strives for a certain degree of realism. Although in Killzone the battles take
place on another planet, there are no laser or plasma weapons. A sentence taken from
the back of the Killzone cover illustrates that the developers are “drawing inspiration
from the best-known ‘real war’ scenarios of our time.” Guerrilla also aims for realistic
and believable NPC behavior. (From the Killzone cover: “Adversaries react like proper
military units”) In Killzone 2, Guerrilla aims to implement realistic tactical individual and
squad behavior as long as this behavior is recognizable and believable for the player.
Recognizable and believable behavior provides consistency throughout the game on
which the player can trust, making the game fun to play. Realistic tactical behavior
implies the use of military tactics and techniques.

5 Guerrilla developed titles for Sony’s game consoles Playstation 2 (PS2), Playstation 3 (PS3) and the Playstation Portable
(PSP).

 9

2 Related work

This chapter describes AI techniques used in other (non-Guerrilla titles) FPS games
and simulations. Section 2.1 discusses techniques that were applied successfully in
commercial games. Section 2.2 explains additional techniques that were only tried in a
scientific and / or experimental setup. In addition, section 2.2 discusses literature about
techniques that were not applied to FPS games, but are nevertheless useful when
designing AI for such games. Finally, section 2.3 summarizes the decision and
coordination systems that are discussed in this chapter. Where applicable, the
descriptions focus on the workings of the high-level decision system for a single NPC
as well as on the system coordinating the behavior of several cooperating NPCs.

2.1 Techniques used in applications

The applied AI in the commercial games discussed in this section can be divided into
two parts. The decision system describes the AI structure and abilities of the individual
NPCs in the game, while the coordination system explains the structure and the
capabilities of coordinated behavior (if existent) in the game.

2.1.1 Quake III Arena

Quake 3 Arena is a multiplayer first-person shooter released on December 2, 1999,
developed by Id Software. Quake 3 Arena is the third title in the series and differs from
the previous games in the Quake series in that it excludes the normal single-player
element, instead focusing upon multiplayer action. The solo experience in Quake 3 is
arena combat versus AI opponents [32].

Decision system
For the Quake 3 bot [43], the main behavioral routines are structured as a Finite State
Machine (FSM). An FSM is a model of behavior composed of a finite number of states,
transitions between those states, and actions [6]. Quake 3 uses a procedural finite
state machine, in which each state is coupled to a procedure capable of producing a
specific behavior, specialized in dealing with a specific situation or task. To accomplish
this, each state has a knowledge base of production rules (if-then-else rules).

At any moment in time, the bot is in one specific state. The production rules of the
active state determine the behavior of the Quake bot6. These rules include conditions
for state transitions. Whenever such conditions are met, the current state is disabled
and the next state is activated. The newly activated state then takes over control of the
behavior. Each state may have multiple conditions to transition to any number of other
states. Figure 2 provides an overview of the FSM, representing procedural states as
nodes and state transitions as arrows.

6 A bot is an AI character that is designed for multiplayer games.

 10

Figure 2: Overview of the Quake 3 bot FSM, representing procedural states as nodes and state
transitions as arrows. The Battle Chase node not only determines how the bot behaves when it is trying

to chase an enemy, but also when the bot stops chasing and starts fighting.

Coordination system
Quake 3 includes several multiplayer game modes that have special team objectives,
e.g. Capture the Flag7. The Quake 3 bot is capable of participating in these games as it
has actions specialized in dealing with these game modes. The activation of these
actions however, is done on an individual basis and it will not take the actions of other
team mates into account. To coordinate the individuals, in each team one of the
members is selected as leader. By sending chat messages, the team leader may order
team mates to attack the enemy or to capture their flag. The Quake bot has a special
module that will allow it to be the team leader as well. For Capture and Hold8 it will
balance the number of attackers and defenders depending on the state of the game.
Besides sending orders to teammates, it will also assign itself a task.

2.1.2 NOLF 2

No One Lives Forever 2: A Spy In
HARM's Way (NOLF 2) was released by
Monolith Productions in 2002. NOLF 2 is
a humorous FPS spy game set in 1960
in which the female protagonist has to
spy on the terrorist organization HARM.
Missions in NOLF 2 can only be
completed by fighting, sneaking, using
gadgets, or a combination of those [27].

Decision system
NOLF 2 uses goal directed autonomous
agents. Agents in NOLF 2 constantly
select the most relevant goal to control

7 Capture the Flag is a game-mode, in which the players and bots have to take the flag from the base of the enemy and return it
to their own base.
8 Capture and Hold is a game-mode in which the team gets points for controlling and defending specific areas in the level.

Work

tt

t

t

t

Priority: 8.0

Death

tt

t

t

t

Priority: 100.0

Stunned

tt

t

t

t

Priority: 80.0

Figure 3: NOLF 2’s goals as boxes with
embedded plans

 11

their behavior. The active goal determines the agent’s behavior through an embedded
plan, a hard coded sequence of state transitions, so each plan is an FSM. When the
agent has a certain goal, the agent sequentially adopts the states of the embedded
plan to reach that goal. In the embedded plan there can be different ways (branches)
to reach a goal depending on the preconditions of each way, but those branches are
predetermined at the time the goal is coded. Figure 3 shows the goals as boxes in
which the fixed embedded plans are schematically drawn [28].

As all goals in NOLF 2 are stand-alone, a problem with the hard coded FSM in
NOLF 2 is that goals cannot communicate with each other. Therefore, each goal has to
be fulfilled completely in order to have the agent in the default position from which he
can adopt a new goal. For instance, when the agent is working at his desk and gets
shot by another agent, the agent will put away his work, stand up from the desk, push
his chair under the desk and finally fall to the ground dead. [30]

Coordination system
To coordinate multiple agents NOLF 2 uses a Blackboard System. A Blackboard
System is a shared object that allows inter-agent communication through posting and
querying public information [15]. The blackboard in NOLF 2 allows agents to post
records, remove records, query records, and count records. A record consists of the ID
of the posting agent, the ID of the target object and some record information.

In FPS games, it is often the case that multiple agents are shooting at a threat. In
many of these cases the line-of-fire from an agent to a threat can be blocked by an ally.
The blackboard of NOLF 2 provides a solution to this problem. Generally, when an
agent finds himself obstructed by an ally, the agent can do four things:

• The obstructed agent can do nothing.

• The obstructed agent can fire anyway, possibly killing his ally.

• The obstructed agent can move.

• The obstructed agent’s ally can move.

The first two options are not optimal and often make the agent look stupid. The other
two options need some form of communication, which in NOLF 2 is provided by the
blackboard system. The obstructed agent first determines that his line-of-fire is
blocked. The next step is to determine whether the obstructing object is an ally. The
obstructed agent can then now ask his ally to duck, so the agent can fire over his head.
When the ally denies the request the agent can move to another position. To make this
cooperation process look even more intelligent, the obstructing agent can shout at the
ally to duck as part of the requesting process [29].

2.1.3 FEAR

First Encounter Assault Recon (FEAR), a
first-person shooter developed by
Monolith Productions and published by
Vivendi, was released in 2005. FEAR is
an FPS in a horror setting in which the
protagonist works for the secret special
operations group FEAR of the US
government dealing with paranormal
threats [5].

Work

Recoil
Stand

Up

Sit
Down

Animate

Goto

Priority: 8.0

Death

Priority: 100.0

Stunned

Priority: 80.0

Working Memory

Figure 4: The decoupled goals and actions of
F.E.A.R.

 12

Decision system
FEAR uses Goal-Oriented Action Planning (GOAP) as decision system. GOAP defines
the conditions that have to be met in order to satisfy a certain goal. As in NOLF 2, the
agents in FEAR constantly select the most relevant goal to control their behavior. At
every point in time when goal selection takes place, goals compete with each other for
selection. When a goal wins this competition, that goal is considered best for the
situation the agent is in, thus that goal is selected. After the selection the agent
supplies the goal to GOAP after which GOAP generates a plan to satisfy that goal.
Unlike the embedded plans in NOLF 2, goals and actions are decoupled (see Figure
4). GOAP has all the actions the agent can perform available and GOAP can predict

the outcome of an action. For instance, the outcome of the action reloadWeapon is a
reloaded weapon at the end of the action. GOAP tries to find a path among all
available actions the agent can perform in order to find such a sequence of actions that
the goal is satisfied. This path is called a plan. [30]

Coordination system
The coordinated behavior in FEAR can be divided into simple and complex squad
behaviors. Simple behaviors involve laying suppression fire, sending the AI to different
positions, or have the AI follow each other. Complex behaviors handle things that
require more detailed analysis of the situation, like flanking9, coordinated strikes,
retreats, and calling for and integrating reinforcements. Complex behaviors are not
actually programmed in FEAR, but emerge from simple squad behaviors. For instance,

the squad goal get_to_cover can emerge into a flanking maneuver when a squad
member (accidentally) gets into cover at a flanking position. [30]
Simple squad behavior in FEAR consists of four basic behaviors:

• get_to_cover has the squad members to lay suppression fire as the squad
members not in cover get into cover.

• advance_cover squad members lay suppression fire as the squad members move
closer to the threat.

• orderly_advance moves the squad in a single line to another position having each
squad member cover the squad member in front of him and having the last squad
member covering the rear.

• search splits the squad into pairs and has the squad systematically search rooms in
a certain area.

Simple squad behaviors follow four steps. Squad AI tries to find squad members to
participate in the squad behavior. If the squad AI finds participants, the squad behavior
activates and the squad AI sends orders to the participants. The squad member
receives the orders as a goal. That goal will compete for priority among the other goals
the squad member has as normal.

2.1.4 Halo 2

Halo 2, an FPS developed by Bungie Studios, was released for the Xbox game
console in 2004. Halo 2 features a science fiction setting in which the protagonist has
to prevent a collective of genocidal alien races from destroying earth and its inhabitants
[11].

9 Flanking an enemy is attacking the enemy from multiple sides at the same time

 13

Decision system
Halo 2 uses a Hierarchical Finite State Machine (HFSM) as decision system. As
mentioned in section 2.1.1, an agent using the FSM decision system has a certain
state at every point in time. While an FSM determines the state of an agent by going
through a list of possible states the agent can reach, the HFSM uses a behavior tree or
a behavior Directed Acyclic Graph (DAG) (see Figure 5). Often HFSMs use a behavior
DAG, because sometimes a certain state (or behavior sub-graph) can be reached by
going along different paths through the graph. In a typical HFSM scheme, the role of
non-leaf behaviors is to make the decision about which of its children to trigger, while
the role of the leaf behavior is to actually adopt a state. There are two general
approaches in the decision making of the non-leaf behavior and at different times Halo
2 uses them both:

• The parent makes the decision based upon the conditions from the code that apply.

• The children compete with each other on relevancy or desire-to-run.

The second approach is mostly used when there are many (10-20) children, because
hard coding the logic that differentiates between 20 possible children can be tedious
and unscalable.

In the child competitive model Halo 2 primarily uses the prioritized-list approach to
determine which child triggers. The list of children is in a priority order. The first child
(with the highest priority) of which all preconditions apply, is chosen. When a sibling
should win on a next update, the behavior of the child is interrupted and the behavior of
the sibling is run. The prioritized-list approach uses a fixed prioritization. In order to
have the ability to make priorities flexible Halo 2 uses a technique to raise the priority of
lower placed behaviors temporarily whenever specified conditions are met.

Each update the decision tree runs through the conditions of the nodes in order to
check whether the conditions are true in order to trigger a certain behavior. Normally,
events in the game world trigger those conditions, but on certain occasions (when the
condition is rarely true) it is desirable to let the event directly trigger a behavior instead
of a condition. These event-driven behaviors are called Stimulus behaviors and
optimize the calculation time, by skipping unnecessary checks.

Halo 2 uses different characters which can all have different behaviors. However,
as most basic behaviors are equal the game uses Custom behaviors. Each character
uses the same HFSM scheme, but some children can only be triggered by a specific
character [17].

 14

Coordination system
Halo 2 has a joint behavior system which allows individual agents to post requests to
friendly units. For instance, if an agent notices that another agent is friendly and that
both agents are after the same enemy, the agent can post a request to the other agent
to jointly attack the enemy. If the other agent accepts, both agents can interchange
information about the enemy and the environment and work together to find the enemy
and attack him together. Another example of joint behavior in Halo 2 is that an agent
can ask a driver of a vehicle for a ride. If the driver of the vehicle accepts the request,
he will pick up the requesting agent.

2.2 Academic work

The academic research projects described in this section either focus on the
development of a decision system for single agents, or on the cooperation between
agents. The final subsection discusses the use of a technique for coordinated behavior
that may be called ‘observe and adapt’.

2.2.1 Soar Quakebot for Quake 2

Quake 2, released on December 6, 1997, is a first-person shooter computer game
developed by Id Software. It includes a single player campaign as well as multiplayer
game-modes. The network architecture of the game allowed third parties to develop AI
controlled players for the multiplayer game modes [20], [31].

Root

Retreat

Presearch

Flee

Suppressing fire

Self-preservation

Idle

Engage

Postcombat

Grenade

Cover

Guard

Grenade

Charge

Fight

Search

Guard

Shoot corpse

Check corpse

Guard

Uncover

Investigate

Grenade

Vehicle

Figure 5: The behavior DAG of Halo 2.

 15

Decision system
In 1999, researchers at the University of Michigan, USA, developed a bot for Quake 2
which they called the “Soar Quakebot” [20]. The developers used Soar to encode the
bots intelligence. Soar is a cognitive architecture to model various aspects of behavior
and to implement these models. Soar is based on a production system, using rules that
are roughly in the form “if A then B“ [36]. These rules are chained like a hierarchy in
which abstract goals and behaviors are further decomposed & refined until they are
primitive actions. For example, in order to get a certain item, the bot must go to the
item, face the item, move over it and wait until it has disappeared (picked up).

The Soar Quakebot has several main tactics, which are encoded as top-level
operators to start the chain of knowledge rules. The top-level operators are collect-
powerups, attack, retreat, chase, ambush and hunt. In each reasoning step, Soar
searches for all knowledge rules that can be applied, given its knowledge base and the
partially decomposed operators. Soar does not have a built-in conflict resolution
strategy. Whenever more than one rule is applicable, it creates a new sub state in
which the impasse is formulated as a new problem that must be solved. On the part of
the knowledge base developer, this requires explicit rules explaining the order / relative
relevancy of the operators. This gives the developer the opportunity to switch
behaviors based on contextual information.

2.2.2 SHOP HTN Unreal Tournament bot

Unreal Tournament, a popular first-person shooter developed by Epic Games, was
released in 1999 as a follow-up title to Unreal. The game focuses mainly on multiplayer
action and was launched in direct competition to Id Software's Quake 3 Arena. Unreal
Tournament became an interesting research platform with the development of JavaBot,
a higher-level API to the ‘GameBots for Unreal’ protocol. Using JavaBot, developers
can create Unreal Tournament software players without having to worry about the
specific GameBot protocol or the network interface [18], [41].

Coordination system
For his MSc thesis at the Lehigh University, USA, Hoang researched the use of
planning techniques to control the strategy of Unreal Tournament bots [13]. His bots
are based on the example CMU_Jbot that comes with the JavaBot distribution [18].
The CMU_Jbot includes code to move around, react to enemies, etc, but it does not
have special strategies that coordinate behavior between multiple bots in games that
have team objectives. Hoang interfaced an HTN-planning process (see section 3.2.1)
with the JavaBot acting as a team leader, keeping track of team objectives, the
locations of all bots and commanding the bots to go to certain locations.

The team game mode Hoang focused on is called domination. Simply put, teams
receive points while they can keep certain predefined locations (domination points) free
of enemies. The implemented strategies are based on the assumption that it is best to
send each bot to a unique location. One strategy sends the bots to capture half the
number of domination locations plus one, to ensure a winning position. Another
strategy tries to control all points. The planning domain works for two bots only and
includes separate versions for two and three domination points.

2.2.3 Observe & adapt

Another method of performing intelligent group behavior is for individuals to observe
the behavior of others and to adapt their own behavior accordingly. This method is

 16

applied to e.g. team sports where each player may be the instigator of an attack
launched towards the opponent. Team mates will pick up this behavior and support it
with their own actions. Intelligent group behavior is performed without explicit
communications. While this approach may, for example, be of interest for developers of
robots for the Robocup project10 [34], there are a number of reasons why it is not used
in computer games. In any recently developed computer game, agents all ‘live’ in the
same simulated game world run on the same machine. Using messages to
communicate plans or intentions is therefore much more practical than figuring out
what other teammates are doing, which may be a very computationally intensive task.
Using explicit messaging will also make the system less prone to errors since there is
no way to misunderstand the intentions of fellow players.

2.3 Summary

This chapter showed some decision systems that place the HTN planner discussed in
detail in section 3.2 in its developmental context. In addition, the coordination systems
subsections showed the development of squad coordination systems in several games.
This section summarizes the decision systems in section 2.3.1. Section 2.3.2
compares and classifies the coordination systems that were discussed in this chapter.

2.3.1 Decision systems

When analyzing the decision systems discussed in section 2.2, a part of the evolution
of agents in game AI decision systems can be seen. In the beginning the AI existed of
production rules. If-then rules defined all behavior of an agent. The Soar Quakebot for
Quake 2 uses the production rules system to hierarchically decompose a set goal into
primitive actions. Agents developed from having mere production rules to having states
in an FSM. In Quake 3 an FSM was used, while Halo 2 extended the concept of FSM
with a Hierarchical FSM adding several features to make it more dynamic. NOLF 2
uses an FSM as well, but states are goals that can be satisfied with a fixed set of
actions. In NOLF 2 goals are not able to interact with each other. FEAR decouples the
actions from the fixed goals in order to generate flexible action sets, so goals can
interact. Tasks can be hierarchically assembled by the HTN planner, which is able to
plan different future actions as a plan. However, the HTN planner can also be used to
hard code strategies and locations as in the SHOP HTN UT bots discussed in section
2.2.2. A different approach to agent decision systems is the Observe & Adapt method
used in the agents used for the Robocup.

10 The ultimate goal of the Robocup project is to develop a team of fully autonomous humanoid robots by 2050 that can win
against the human world champion team in soccer

Coordination System Category

Centralized Decentralized Player Controlled

Quake 3
NOLF 2

SHOP HTN UT Bots

FEAR
Halo 2

Observe & Adapt

FSW

Table 1: Coordination System Categories. The coordination system
of the SOAR Quake bots (section 2.2.1) was excluded in the table,

since there is no information of its coordination system.

 17

2.3.2 Coordination systems

Coordination systems in FPS games that control the cooperation between agents can
be divided into two categories: Centralized and Decentralized [38], [37], Table 1: shows
the coordination systems discussed in this chapter and the categories in which they
fall. Quake 3 uses a team leader to coordinate its bots. Hoangs hard coded SHOP
HTN Bots are sent to certain fixed spots by a central system. NOLF 2 uses a central
Blackboard System on which agents can post information. The coordination system of
FEAR and Halo 2 is similar to the blackboard system used in NOLF 2. In both FEAR
and Halo 2 agents invite other agents to start a joint maneuver. Agents directly
communicate to other agents, which classifies the coordination systems of FEAR and
Halo 2 decentralized. The agents using the coordination system in the Robocup Project
observe and adapt to the new world information as they seem fit without using a central
system. Full spectrum Warrior fits in neither of the categories mentioned above, as
coordinated behavior between the squad members is non-existent and fully controlled
by the player.

 18

3 Guerrilla FPS AI

As described in section 1.1.2, a recent development in FPS AI is the use of planning
techniques. The AI developed and used by Guerrilla has undergone similar
development. The AI of the game Killzone, developed for the PS2, uses sequences of
actions in combination with goal selection based on heuristics to control the behavior of
NPC. For Killzone 2, the AI system was changed to make use of a specialized
implementation of a Hierarchical Task Network (HTN) planner.

This chapter provides a description of the AI system of Killzone and a description of
the changes that were made for Killzone 2. The first section gives a global view on
Killzone’s AI system, discussing everything from stimulus (observations and
perception) to response (the AI decision process, behaviors and actions). For Killzone
2, the high level decision system was replaced, while the other parts remained
basically the same. For this reason, the second section will focus on the changes in the
decision system only. The third section described the functional abilities of the
individual agent and the squad that already exist in Killzone 2 and are relevant for this
project.

3.1 Killzone

When Guerrilla started making first-person shooters, the AI team developed a generic
AI system that would be reusable for future games. The system was initially used for
“Shellshock Nam ‘67”. The games that followed, Killzone and Killzone Liberation, used
the same system of Goals, Actions and Skills. This decision system is described in the
first subsection. The subsections that follow address NPCs knowledge about enemies,
the tactical evaluation of positions (position picking), path planning, and coordinated
behavior.

3.1.1 Goals and Skills

The AI of Killzone is based on sequences of actions called behaviors. These behaviors
can be seen as predefined plans. They are predefined in the sense that the sequence
of actions is constructed during design / development phase and does not change
during the execution of the game. The behaviors are plans as the actions are
performed consecutively as long as none of the actions fail.

All agents have a set of goals that they may want to achieve while being in the

game. Examples of these goals are PursueThreat and AttackThreat. At fixed intervals,
the relevancy of all available goals is evaluated. Depending on world observations and
data available on the character’s own state, the most important goal is selected. For
each of the available goals, a behavior is available that will enable the agent to reach

that goal. The behavior for goal PursueThreat for example, consists of the actions

SelectTarget, PickPursuitPos and MoveToPursuitPos. Like NOLF 2 (see section
2.1.2), Killzone uses character differentiation. Each character type may have its own

sequence of actions to satisfy a certain goal. For example, the goal KeepWeaponReady

may result in the behaviors ReloadInCover (move to cover, then reload) or

ReloadStatic (reload at current location), depending on the character settings. Each
character may only have one of these behaviors per goal.

Whenever the current action fails (e.g. a pursuit position could not be found), the
chosen behavior can no longer be executed and will abort. To ensure that the same
behavior will not be restarted directly, the goal that activated the current behavior will
get a penalty for a short period of time. There is no explicit communication between

 19

goals. However, during the penalty time, the goal that received the penalty will be
considered less important, causing the agent to select a different goal and activate an
alternative behavior.

Figure 6: Overview of the process between the selection of a goal and the usage
of the virtual controller. Each goal contains a behavior, a sequence of actions.

Actions describe what the body should do via body goals. Skills are components
that use the virtual controller according to the active body goals.

To actually get the agents to move, the AI must use a virtual controller. This
controller contains virtual ‘buttons’ to do all things that the body of the agent is capable
of doing, such as (among other things) to walk, run, talk, look, aim and fire. To have
control over each distinct body function, agents have skills that, when activated, will
use the virtual controller. Some of these skills use buttons that control the same part of
the body and therefore cannot be combined, e.g. a body part cannot simultaneously
turn left and right.

The higher level actions that comprise the behaviors cannot use the virtual
controller directly. Instead they must specify body goals (describing what the body
should do, e.g. turn the lower part of the body to face north) and assign priorities to
them. A matching procedure will search for and activate a combination of skills that will
satisfy the body goals that have been set by the actions. An overview of the complete
process from the selection of goals to the use of the virtual controller is shown in Figure
6.

Since body functions are closely related to the type of body an agent has, various
types of enemies may have different sets of body goals and skills. All humanoids share
the same set of body goals and skills.

3.1.2 Combat Situation and Alert Level

Agents that walk around in the game world produce both visual and auditory stimuli.
Footsteps, gunfire and explosions are examples of events that produce auditory stimuli
for the AI. Among other things, various parts of the body of agents or unexploded
grenades produce visual stimuli. All incoming stimuli are filtered according to the
sensitivity of the receiver, the source, range and type of the stimulus. All the stimuli that
one agent receives from one specific source are combined into a general indication on
how well the agent perceives the source. It is through this system that agents obtain
information on their opponents.

Each agent remembers information about its combat situation, which includes
knowledge on the enemy and on their own general state of alertness or alert level. This
information plays an important part in the evaluation of the relevancy of the various
goals the agent has (see section 3.1.1).

Depending on how well an agent has perceived an enemy, it may only suspect
threats (reflects belief of some enemy presence), confirm threats (reflects knowledge of
some enemy presence) or identify threats (reflects knowledge on exact identity of

Goal

Action

Action

Behavior

Action

Action

Virtual

Controller

Bodygoal

Bodygoal

Bodygoal
Skill

Skill

set info
read status

read info
set status

push
buttons

Skill

 20

enemy presence). Agents store information on what they consider to be their four
greatest threats. They also keep track of the threat positions and movement and will try
to interpolate threat locations based on their direction and speed. Whenever one of the
threats leaves sight and does not produce auditory stimuli either, agents will start to
expand a range of possible locations for that threat, based on its last known waypoint
and all possible directions in which the threat may have moved. The vision of the agent
determines the edges of the area that is being considered. Threat prediction will stop
once the threat comes into sight again, meaning that a threat could never have moved
past a location that is in clear sight of the agent. If threats are not perceived for a long
time, agents will lose track of them.

The alert level is closely related to the evaluation of threat presence. In their lowest
alertness, agents do not suspect any threats. Auditory stimuli such as footsteps may
not be enough to identify an enemy, but it may raise the alert level of the perceiver to
‘threats suspected’. After threats have been confirmed, the alert level may rise even
more when the agent enters combat, is under attack or is getting hit.

3.1.3 Waypoints and areas

To make path finding and position picking easier for the AI mechanism, approximately
half of all FPS games, including Killzone, use waypoints. A waypoint is a point in the 3-
D virtual world where an agent can be. If an agent or a player is not exactly at a
waypoint, the closest waypoint is calculated and the agent or player counts as being on
that waypoint. All waypoints in a level are connected to each other or via another
waypoint by edges as in a graph. A waypoint has a certain radius, which is used for
visibility. After the geometry of a level is designed, the Waypoint Exporter program is
run, which among other things, calculates the visibility range in all directions of all
waypoints. If a radius of another waypoint is within this visibility range, that waypoint
counts as being visible from the waypoint calculating its visibility range.

Killzone uses AIAreas to group certain waypoints in the entire grid of waypoints. An
AIArea may contain one or more waypoints that are usually connected to each other.
AIAreas are most commonly used to name certain locations, e.g. a certain room.
Agents can have area restrictions that restrict them from entering or leaving certain
predefined AIAreas. Area restrictions are often used to gain more control over the
autonomous behavior of the agent, e.g. to keep an agent within a certain area or to
prevent the agent to move through an area and plan its path around the area.

3.1.4 Position picking and path finding

While squad orders and scripted positions can make an agent move to a waypoint as
well, the autonomous AI agent chooses its positions based upon threat information.
The agent defines a primary threat and secondary threats. As threats are moving, the
agent has to continuously pick the best position to deal with the threats. When in
combat, short distance movement is best, because while moving the agent is more
vulnerable for attacks. The best option is usually a covered position from which the
agent can attack its threats. These conditions can be calculated by an evaluation
function using the following criteria:

• Proximity to the current position of the agent.

• Positions having line of fire to the primary threat.

• Positions having cover from secondary threats.

• The fighting range is the distance range from which the agent prefers to attack.

 21

In Figure 7 the agent has
evaluated all surrounding
waypoints within a certain
radius. The agent picks the
next position to move to
according to the highest
evaluated value [39].

Agents in Killzone use the
A* algorithm [24], [12], to find
a path between two
waypoints in order to move to
the picked position. This path
always exists, because the
position picking algorithm
has already picked legal
waypoints. However, as
scripted positions have not
been calculated by the
position picker, they can be
illegal, i.e. not be reached, causing the agent to stall.

3.1.5 Order priority

In addition to the autonomous behavior of the individual agents, individuals can also
receive orders from the squad (see section 3.1.6) or the script (see section 1.1.3) to
perform. To cope with all the different behaviors the individual should perform at a
specific point in time when having its own desired behavior and having orders to
perform, individuals have a strict ordering in the behaviors the individuals can perform.
Squads can receive orders from the script as well. These orders have higher priority
than the autonomous squad behavior. Orders can be given the following priorities:

• Blind following, always execute the order without regarding the environment.

• Follow orders, only postpone the execution of the order in case of direct danger,
e.g. when in the danger area of a grenade or when there are enemies at very close
range.

• Non-battle initiative, only execute the order when no enemies are in the
neighborhood or there is no other plan to execute.

The following example illustrates how an individual would act with a combination of
internal priorities and orders. The squad orders a group of individuals within the squad
to line up in front of a door with ‘blind following’ priority. The individuals start to move to
the door, since the squad order overrides the individual autonomous behavior. Halfway
their movement, one of the individuals receives a different order with ‘follow orders’
priority to move to a specific spot in the corner of the room the rest of the individuals is
doing their line up in. While individual that received the new order starts executing it,
the rest of the individuals keep moving towards the line up positions initially given by
the squad. While all individuals are moving towards their spots, an enemy throws a
grenade into the area all individuals are moving in. All members are in the danger area
of the grenade. The individuals that were given the squad order which has the ‘blind
following’ priority ignore the grenade and keep moving towards the spots designated by
the squad order. However, the individual that received the order with ‘follow order’

Figure 7: The agent (blue) picks the best position according to
the highest value of the evaluation function. The big red square
is the primary threat. The small red squares are the secondary
threats. The dark rectangles are high walls and the lighter
rectangles are low walls. [28]

 22

priority postpones the order and immediately lets the autonomous behavior of the
individual move the individual out of the danger area of the grenade. After the grenade
has exploded, that individual resumes its order with ‘follow orders’ priority, moving to
the spot designated by the order.

3.1.6 Squads

To allow for coordinated behavior, the AI of Killzone supports the grouping of individual
agents into squads. Squad in Killzone can be seen as an extra layer of control that is
placed on top of individual agents. The relation between a squad and its members is
hierarchical. Each squad may have any number of members (typically not more than
four), while each individual agent may only be a member of a single squad.

The squad establishes a binding that acts like a hub that enables sharing of
information between squad members. It also provides a combat situation that acts as a
summary of the combat situation information from all members. All members of a
squad share their information on enemies. As soon as one of the squad members
identifies a threat, it will inform its squad. The squad will save this information in its own
combat situation and will pass it on to all other squad members.

Even though the squad does not have a visual representation of its own, it is an
agent as well. Squads have their own set of goals and behaviors that allows them to
execute a number of coordinated actions using their members. Most of these goals are
only executed when activated through a game script. As with individual agents,
commands can be sent to squads and these commands may be bundled in a
command queue. The squad will try to execute the orders one by one. Other than
giving commands, scripts may also manipulate the area restrictions of a squad,
restricting all members of the squad simultaneously.

Figure 8: The squad behavior in Killzone and Killzone 2

When creating a squad, a formation must be specified. During all movement and
during defense operations, the squad will try to maintain this formation. Each squad
uses its own area of operation to keep its members together. During movement, the
center waypoint is used for path planning. The squad will then project its formation onto
the planned path resulting in new positions for all squad members. Once all squad
members arrive, the squad moves its area of operation a little further and starts
projecting the formation once more. This cycle repeats until the squad reaches its
movement target.

 23

Figure 8 shows Killzone’s squad behaviors. Pursue allows the squad to pursue

enemies, by moving towards last known locations of threats. Defend is the default
behavior and will cause the squad to defend its current location, while trying to

maintain its formation. Advance is the squad equivalent of the ordered move command.

Attack_to is basically the same as Advance, with the exception of the squad members

stopping and fighting once they encounter enemies. Patrol is a looping version of

Attack_to. Escort is meant for escorting the player. During this operation, the squad is
invisibly tied to the position of the player by means of what could best be described as

a rubber leash. The last ordered behavior, Leapfrog, will cause half of the squad to
advance while the other half holds position, provides covering fire. Once the first half of
the squad reaches a certain distance, the roles are reversed.

3.1.7 Bot AI for Domination games in Killzone

Killzone includes AI modules to control the bots for all available multiplayer game
modes, including Domination. Since the AI programmed for Domination will serve as a
standard to test and evaluate the deliverables, this section will explain the inner
workings of this AI system.

The coordination between the bots for Domination is centralized. Each individual
bot of the same faction receives orders from and reports to the same faction leader.
Like squads in Killzone, this faction leader is a reasoning component without visual
representation in the game world. The faction leader is implemented as a script that is
allowed to update each game update cycle. The faction leader assigns a role to every
bot. At any time, each bot is either an attacker or a defender of a specified target.
These targets are also handed out by the faction leader.

The number of bots that is assigned a role as attacker depends on the number of
captured switches. Whenever the faction leader is updated, it decides how many
attackers are desired based on the following rules:

• When all switches are captured: 0% attackers.

• When at least one switch is captured: between 50% and 75% attackers. This is
determined linearly. The more targets are captured, the fewer attackers are desired.

• When no switches are captured: 100% attackers.

The faction leader does not keep track of dead bots; each bot that spawns will get a
new assignment. Bots spawn at a randomly assigned spawn point and are assigned an
attacker role by default. Like the spawn locations, the targets are also chosen at
random, with the exception that neutral targets are preferred over switches which have
been captured by the enemy.

When a bot is assigned the role of attacker, the faction leader orders it to move to a
location in the vicinity of the target switch and then to report back to the faction leader.
When attackers arrive at the switch they send a message to the faction leader.
Subsequently the faction leader either assigns the bot the role of defender, if the switch
was successfully captured, or it assigns the bot the role of attacker of a different,
randomly chosen target.

During the faction leader’s update, the excess of defenders is changed into
attackers to get to the desired number of attackers. This is done by repeatedly finding
the best defended switch and assigning an attacker role to one of its defenders.

Except for sending out move commands, the faction leader does not control the
behavior of the bots. The actual attacking behavior is defined on the individual level
using Goals and Actions (see section 3.1.1). Defending bots use the same behavior,

 24

but their movement is restricted by the faction leader using area restrictions (see
section 3.1.3).

The review of the source code of the Domination bot AI of Killzone has brought to
light that there are some programming errors that could cause the bots to behave
differently from what was originally designed. These errors cause the faction leader
never to assign defender roles, not even after successfully capturing a switch. This
leads to much more chaotic behavior than intended. The problems are addressed in
section 6.2.1 in preparation of the experiments that compare the Domination strategy
with the new bot AI.

3.2 Killzone 2

The AI system of Killzone 2 is based on the system of Killzone. Many of the lower level
AI functions remained the same. The most important change (and the most relevant
change to this project) was the replacement of the goal-behavior system (as described
in section 3.1) by a task planning mechanism. This change enabled a greater range of
possible NPC behaviors and improved the flexibility of behavior implementations. The
following subsection will explain the planning approach in general, followed by a
section on how the HTN planner replaces the goal / action structure of Killzone’s AI
system. The third subsection provides details on how the planner acquires and
requests information about the game world. The fourth and last subsection discusses
the implications of applying a planning mechanism to a dynamically changing
environment.

3.2.1 Planning using Hierarchical Task Networks

Hierarchical Task Networks (HTN) [4] is an approach to planning in which tasks are
planned in the same order in which they are later executed. The result of the planning
process, the plan, is a sequence of concrete actions, called primitive tasks, which need
no further elaboration to be executed. To construct this plan, the planner takes a
planning problem and a planning domain. A planning problem is formulated as a
compound task that needs to be decomposed (planned) combined with a set of facts
that describe the current world state. Planning domains contain knowledge about the
hierarchical relations between compound and primitive tasks as well as the order in
which subtasks must be executed. The structure used to formalize this knowledge is
called a method. An example is shown in Figure 9. The syntax of the Killzone 2 HTN
domains is based on that of the SHOP HTN planner [26], which adopted the syntax of
the language it was implemented in, i.e. LISP11 [3].

The example method shown in Figure 9 specifies how the compound task ‘eat’ with
a single argument ‘?food’ may be decomposed. Each branch of the method specifies a
valid decomposition. (Eating food may either be done by using a fork or by using a
spoon.) The decomposition may be a single primitive task, such as in this example or
any other combination of primitive and / or compound tasks. For each compound task
that is used within the decomposition part of a branch, there must be another method
that specifies how that task can be decomposed. All branches also specify a (possibly
empty) set of preconditions. During the planning process these preconditions are
matched against the world state. The matching process is similar to that of Prolog [2],
instantiating unbound variables during the process. This way, information can be

11 Lisp is a family of computer programming languages with a long history (first appeared in 1958) and a distinctive fully-
parenthesized syntax.

 25

retrieved from the world. In this example, both branches specify a single precondition,
testing for the presence of a fork and a spoon, retrieving their value in the process.

Figure 9: Example HTN method

The planner will always select the highest / first branch for which the preconditions can
be met. If we have both a fork and a spoon, the planner will create a plan that uses the
fork. As a result of this rule, there is no need for other conflict resolution mechanisms.

The planning process is recursive. Compound tasks are recursively decomposed
until the planner finds a sequence for which all tasks are primitive. When a branch
cannot be expanded to the level of primitive tasks, the planner will start backtracking
and try the next branch of that method.

In JSHOP, a reimplementation of SHOP in Java [14], the definition of a method may
include a specification of the effects it would have on the world state. So called add
and delete lists specify which facts should be added or deleted from the world state.

For example, the method shown in Figure 9 may have the precondition (have-food

?food) and the same fact in its delete list. In other words, performing the task (eat

?food) will cause the (have-food ?food) fact to be deleted. The exact outcome of the
execution of a task in Killzone 2 is unpredictable, therefore its HTN planner does not
support add and delete lists.

The HTN planner of Killzone 2 supports a controllable way of manipulating the
world state. Its HTN planner supports specialized primitive tasks for adding and

deleting world facts. The primitive task (!remember ?period ?fact) puts ?fact into the

HTN database for ?period amount of seconds or forever, which is denoted by a dash.

(!forget ?fact) deletes that specific ?fact from the HTN database.

3.2.2 HTN planning in Killzone 2

In Killzone, agents evaluated the relevance of goals and adopted behaviors that were
coupled to the goals. In Killzone 2 the HTN planner is used for these two steps. The
knowledge domains specify how tasks are performed, but also which (sub) tasks
should be considered more important than others. Each type of agent uses a
combination of generic and specialized knowledge rules. Generic knowledge rules for
e.g. basic movement are shared between agents. Defining characteristics of the
behavior of each character type are specified in specialized parts of the domains.

(:method (eat ?food) < Method head

 branch1 < Branch name
 (have-fork ?fork) < Precondition

 ((!eat-with-fork ?food ?fork)) < Decomposition

 branch2 < Branch name
 (have-spoon ?spoon) < Precondition

 ((!eat-with-spoon ?food ?spoon)) < Decomposition
)

 26

Figure 10: Overview of the construction of a plan consisting of primitive tasks. Daemons provide world
information as facts. The domains consist of rules that define allowed decompositions for each

compound task. Initially, each plan contains one compound task: behave. Using the facts and the rules
from the domains, the HTN planner decomposes this initial plan into a sequence of primitive tasks.
Primitive tasks describe what the body should do via body goals. The process from body goals to the

use of the virtual controller remains unchanged with respect to Killzone (see Figure 6).

Independent of the type of character, all plans start out the same; as a single
compound task (behave), which means that the agent should do something useful
given the current situation in game. Higher level choices in the HTN domain decide
what the AI should do. These choices can be compared to the heuristic evaluation of
goal importance in Killzone. Subsequently, lower level choices decompose the
selected compound task(s) into a sequence of primitive tasks, deciding how the agent
should perform the task it selected. In this setting, the role of primitive tasks is roughly
equivalent to that of actions in Killzone. Examples of primitive tasks are
‘!fire_burst_at_threat’ and ‘!walk_segment’. Each character may use any number of
primitive tasks as long as they are compatible with its body type. The plans that result
from the planning process can be seen as more dynamic versions of the behaviors of
Killzone. They are more dynamic since, depending on the context within the game
world, the decomposition of a compound task may result in several different plans.

Apart from the primitive tasks, each character also uses a set of daemons. These
daemons are processes that monitor relevant world state information for one agent.
Just before the planner is started to construct a new plan for an agent, all daemons are
requested to update their status and translate their findings into data structures
(database facts) that can be used by the planner. More about daemons can be found
in section 3.2.3 below. An overview of the process from the construction of a plan to
the use of body goals is shown in Figure 10. The process from body goals to the use of
the virtual controller remains unchanged with respect to Killzone (see Figure 6)

The HTN planner is not only used for the control of individual agents, it is also used
for the coordination of squads. As mentioned in section 3.1.6, each squad has an
invisible squad leader that uses the planner to coordinate squad actions and / or
movement. Squad plans mainly consist of series of orders that are sent to the squad
members. At the time of the start of this project, there were no squad domains for the
HTN planner. As such, the squads did not exhibit any behavior of their own, neither
ordered, nor autonomous. Squad members only shared information on their threats as
described in section 3.1.6.

3.2.3 HTN Planner communication with the C++ code

A daemon in Killzone 2 is C++ code that runs once every agent update (see section
3.2.4). Daemons are able to read and manipulate the HTN database. Daemons
‘translate’ the world situation to information that is usable by the agent in terms of HTN

facts. An example of a daemon is DaemonObjectStates. Every update

Virtual

Controller

Bodygoal

Bodygoal

Bodygoal

Skill

Skill

Skill

set info
read status

push
buttons

HTN
Planner

Plan
behave

facts

daemons

domains

primitive task

Plan

primitive task

primitive task

primitive task

 27

DaemonObjectStates checks the states of objects. For instance, the state of a door can

be either open or closed. DaemonObjectStates translates the states of the object, in this
case the C++ door object, into a fact that can be read by HTN planner usually in the

form (object_type object_name object_state), e.g. (door door_1 open).
A request is a specified fact put into the HTN database by the HTN planner. That

specific fact can be read by the daemon, which can act accordingly. An example of a

request is the fact request_path. When request_path is true, a daemon can act by
planning a new path for that agent. Requests have to wait one update cycle to
complete, because the HTN planner has to wait for the daemon to be run, as daemons
always run at the start of a new cycle. A more direct way of communicating from the
HTN Planner to the C++ code is a call term. A call term is executed immediately. For

instance, the call term (call add ?a ?b) can add two numbers (in this case ?a and ?b)
and return the result.

3.2.4 Applying HTN planning to a dynamically changing environment

In an FPS like Killzone 2 planning ahead is difficult because of the changing
environment. Threats are constantly changing positions and objects can change states,
e.g. a door opens or closes, changing path planning options. Long plans tend to
invalidate quickly, so agents in Killzone 2 make local plans for a short term. The agents
replan at a rate of five times per second (one update) to keep the plan up to date.
Squads replan at a rate of two times per second (one squad update). The time
between two generated plans is often too short to execute a whole plan. There are two
causes for the current plan to be rejected; the plan can become invalid due to a
changing environment or a better plan makes the current plan less desirable. As
replanning happens often, the agents need strategies to replan efficiently. Different
strategies to optimize replanning include updating of tasks, subtask priority order
changes (see section 2.1.4) and partial or delayed decomposition of tasks.

When a replanning agent is performing a task, which is still viable in the next
update, it would cost much calculation time replanning for the same task. A strategy to
tackle this problem is when an agent is replanning and comes across the same task he
is already performing, to simply update the task to match the present situation. For
example, when an agent is performing the task to move to a cover position, while the
enemy presence changes in such way that another cover position provides better
cover from the threats than the chosen position, the task to get into cover remains the
same, but is updated with the new cover position.

The idea behind applying partial decomposition in combination with delayed
decomposition of tasks is to use calculation time efficiently. Partial decomposition only
decomposes the part of a plan that is relevant at this moment, delaying the
decomposition of the rest of the plan until that part becomes relevant. To test whether
the plan is still relevant after executing the first part of the plan, the outcome of the first
part is matched against the preconditions of the rest of the plan. If the rest of the plan
never becomes relevant, that part is discarded and minimal calculation time is wasted,
because that part of the plan was never decomposed [42]. The partial and delayed
decomposition optimization strategies were never implemented in Killzone 2.

 28

4 Technical design

4.1 Design overview

Figure 11: System structure overview.
Group and squad leader are used as synonyms.

The system that controls the behavior of the bots can be split up into three levels.
Figure 11 shows how the three layers of the system are linked together by several
communication channels. The three levels form a hierarchical structure similar to the
one found in military organizations. Specific behavior of individuals is mostly due to the
orders they receive though the chain of command. As in military context, the chain of
command is the line of authority and responsibility along which orders are passed.
Higher ranked components have more responsibility than the lower ones and orders
that come from a superior must always be followed. Orders start at the higher ranked
AI components and are made more specific as they are delegated downwards. Like in
the army, the chain of command also implies that the highest and lowest layers do not
communicate with each other directly.

For each faction there is one mission general taking care of the strategic decisions
for all AI players of that faction. Its task is –among other things– to decide which of the
mission objectives should targeted. Directly under these faction leaders are squad
leaders. They are responsible for a smaller number of soldiers. However, they do need
to give more specific orders to their subordinates to make organized offensive or
defensive actions possible. The lowest layer comprises only individual soldiers. Since
they do not have subordinates, their task is to execute the squad leader’s plans for
attacking and defending objectives.

4.2 Faction leader design

Faction leaders have several distinct tasks. Their main task is to select which targets
among all available mission objectives should be attacked or defended. Different
mission types will have different kinds of objectives. Some kinds of objectives may
need to be destroyed or killed, which means no defense force is needed once the
action succeeds. For Capture and Hold, the main task for the faction leader is to

 29

choose how many and which of the Capture and Hold areas should be targeted either
for offense or defense. To support this decision, this component collects and records
tactical data about the game in progress. Only data that is also available directly or
indirectly to all human players may be used for this purpose. When evaluating this
criterion we may assume that all human players of one faction may actively
communicate using voice chat and reason about their collective status. Current scores
of both factions and the location of the home base spawn areas are available to
anyone on screen. In addition, the faction leader may use mission dependant
information. For Capture and Hold this comprises the exact quantity and location of all
Capture and Hold areas. Human players that are acquainted with the level that is being
played, will know these locations as well from experience. With this information, faction
leaders may use the distance to the nearest spawn area as a criterion for selecting
targets.

Besides target selection, this component is also in charge of finding a way to divide
all available bots over a number of squads in such a way that there is one squad for
each task that needs to be executed. If necessary, it will create new squads and put
unassigned individuals in these squads. However, without consideration of the current
division of bots over squads, many of them may be unnecessarily reassigned to
different squads in unneeded exchanges of soldiers from two or more different squads.

To overcome this issue, every time the faction leader decides to do something new,
squads that are currently already in operation (perhaps already performing one of the
required tasks) are kept untouched as much as possible. When the number of squads
and the division of bots over these squads is satisfactory, the faction leader’s task is to
send out its orders to attack, defend, patrol, scout, etc. For Capture and Hold it orders
squads to move to Capture and Hold areas.

The last task that this component has to perform is the selection of spawn points for
respawning NPCs. For each of the squads, the faction leader selects a spawn point
that fits their task. Generally, this is a spawn point nearby the target of that squad, but it
does not need to be. Squads will spawn all of their members at this spawn area.

4.3 Squad leader design

The following subsections describe the requirements for the squad leaders that control
the bots. The first subsection will explain which types of squad behavior should be
supported and which ones are not included. These behaviors are further elaborated in
the second sub section, which defines squad tasks. Subsection three discusses the
information required by the squad leaders to perform their tasks, while the last section
describes how this information is communicated to and from the squad leaders.

4.3.1 Types of squad behavior

There are a number of characteristics by which coordinated squad behavior may be
categorized. As a first characteristic, the behavior may be a form of synchronous
action, where all of the squad members perform the same action at the same time.
This is the simplest form of coordinated behavior since the squad leader may simply
broadcast a specific order to all members. Bots that all start charging an objective at
the same time display an example of this behavior. On the other side, different bots in
one squad may be given distinct roles in a joint behavior. In this case, the squad leader
will have to send out different orders to the various members. An example of this
behavior is a flanking operation where part of the squad attacks directly from the front,
while others walk around and attack from the side.

 30

Apart from executing orders – which is a form of reactive behavior, squads may
also be programmed to display autonomous more pro-active behavior. In this case, the
squad leader is the initiator of squad actions. This project will not be exploring these
types of behavior, since, by allowing squad leaders to initiate squad movements or
behaviors, the control over the bots will become more difficult. More about research on
autonomous squad behavior can be read in [1].

A last category of coordinated squad behavior comprises actions that are normally
already part of the behavior of individuals, but are now coordinated. Most of these
cases concern coordination of the choice of targets. As an example, squad members
may coordinate their attack targets so they can concentrate their fire on the most
pressing threats. When there are no threats, squad members may divide the locations
at which enemies are likely to appear, so that each squad member watches a different
location, making sure that the squad will pick up new threats, regardless of where
these threats are coming from.

4.3.2 Squad tasks

The squads need to be able to perform any task that they can receive from the faction
leader and any subtask that may be part of those tasks. From a complete system’s
point of view this means that the squads should take care of coordinating actions such
as moving from A to B, defending objectives, attacking objectives, following targets and
various combat moves. Some of these actions can be very general, suitable for reuse
for multiple mission modes (combat techniques and movement for example) while
other actions may be very mission specific. When looking at the Capture and Hold
mission specifically, squads need at least to be able to attack a Capture and Hold area,
to capture it and to defend it from being captured by the enemy. To ensure that the
members of a squad can attack as a group, squad members will need to regroup at a
nearby location that provides cover from the neighboring areas. If squad members
regroup before starting their assault, they will arrive at their attack location mostly
simultaneously. This will increase their chances of success.

The squad leader should have a better overview of the level than the individual
bots. When relevant information is at hand, squad leaders should provide the members
with any information that would prevent the squad members from unexpectedly
entering enemy territory.

4.3.3 Required information

To perform its tasks, squad leaders will need multiple sources of information. On
the mission independent side, they need to have access to the status of squad
members, because during an attack, squad tactics may change. If the number of alive
squad members drops beneath a certain threshold, the squad leader may decide to
abort the attack. In other cases, the squad leader may decide to wait for
reinforcements. To assure this kind of control, squad leaders should be able to reason
about all squad members. It should know of all members if they are either alive and
playing, or dead and waiting to spawn.

Furthermore, for Capture and Hold, they have access to the exact location of all
Capture and Hold areas, what their sizes are and what their current status is, i.e. which
faction is the current owner and for neutral areas if it is being attacked. Squad leaders
also know of the areas around Capture and Hold areas that should not be crossed
when attacking another area. Allowing the AI to reason with this kind of information
may be considered cheating. However, more experienced players that already played

 31

in the level multiple times will remember these locations and the position of the
objectives as well.

4.3.4 Squad communication

Apart from receiving and sending orders, there are two more communication channels
that squad leaders need to handle. Individual bots can send tactical updates on their
perception of the current situation. The squad leader’s task is to process these
messages and send a summarized version of this information back to the faction
leader. It should also inform the faction leader of any major changes in the progress of
executing the ordered task (i.e. the task was completed or cannot be completed any
longer).

4.4 Individual design

Since most of the individual behavior of the bots can be done by a system that has
already been designed for single player AI, there are less issues left in the design of
the individual AI then there are for the upper two layers. The behavior of the individual
AI bots does require some adjustments however, to make them act more aggressively,
lowering their restrictions and raising their health to equal human players (see section
1.2.2) As with the squad leader, the AI must support the execution of all tasks that may
be received, this time from the side of the squad leader. Any mission dependant atomic
actions – handling mission dependant objects, destroying objects in ways other than by
firing – should be designed and implemented on this level. For Capture and Hold,
individuals need to know the exact locations of the capture areas and be able to
approach and capture the areas. Individuals need a way to pick locations within the
target capture area. To spread out a bit more, bots should move to different spots in
the area they are attacking. If the attack succeeds the bots should not all be standing
at the same spot, since this would harm an efficient defense.

Since the AI lives inside the game’s simulated world, it uses a virtual joystick
instead of a physical one (see section 3). Instead of using an analogue stick, the AI
can specify an aim target directly. In order to make the AI miss convincingly (and not
look stupid) there are several systems in place. Aim ‘mistakes’ are simulated as well as
the spread of a weapon. Preferably, bots should aim just as well as average skilled
human players would. Making their aim worse would make them look stupid, while
making the aim better would create a feeling of unfairness in human players.

Individual bots must be able to communicate messages to the squad leader
concerning tactical information, about their own status and about the task they are
performing. Since the squad leaders will already notice when one of the squad
members dies, squad members do not need to send a failure message when death
coincides with the failure of the task. Individuals do need to send updates on tasks that
succeed or fail without measurable consequences for the squad leader. Tactical
information can be anything concerning enemy troops, for example information on
perceived enemies at a certain location or on enemies that are killed while defending
an objective.

 32

5 Implementation

The structure of the three layers is implemented as follows. The faction leader is
programmed as a C++ class, while the squad leader implementation uses HTN
domains. The strength of the HTN planner lies in the evaluation of logical conditions
and in the recursive decomposition of compound tasks. Although iterations and more
complex arithmetic operations can be performed, HTN solutions to these kind of
problems are considered suboptimal to those of a procedural language such as C++,
since they require more programming effort and are generally less readable. The
faction leader needs to evaluate heuristics and needs to perform algorithms to assign
individuals to groups. Since these problems are best solved using procedural
arithmetic, the HTN planner is considered less suitable or at least less convenient for
the implementation of the faction leader. Aside from an iteration over its squad
members, squad leaders have little need for iterations or arithmetic. To explore
possible advantages of the planner the squad leader’s AI has been implemented as an
HTN-domain. These advantages are further discussed in the evaluation section 7.1.2.

The three layers all operate on different update frequencies. The individual’s HTN
planner is invoked about five times a second, while squads are updated only twice in
that same period. The faction leader is only updated once every 6⅔ seconds (that is
once every 100 game logic cycles). The updates of two faction leaders are interleaved.
This means that when the ISA faction leader gets updated, the Helghast faction leader
is updated 3⅓ seconds later, and then 3⅓ seconds after that, the ISA faction leader is
updated again, etc. (See Figure 12) As higher-level plans do not invalidate as quickly
as the plans of individual bots, the faction leader can suffice with updates performed at
this frequency. In fact, a lower frequency prevents some problems with faction leaders
constantly switching between two or more strategies when the conditions for selecting
a strategy change rapidly.

Figure 12: The faction leader updates are interleaved.

The three layers communicate in a hierarchical fashion. Any two layers may only
exchange messages if one of them is the direct subordinate of the other. Between the
three layers, there are four communication channels to implement.

The faction leader sends orders to the squad leaders. These orders indicate which
of the objectives should be targeted by the squad. The orders are inserted in the
squad’s command queue and remain active until either cleared by the squad (when the
order has been completed) or until they are overwritten by new orders from the faction
leader.

Squad leaders send orders to individual squad members. These orders are inserted
into the individual’s command queue and, just like the squad orders, remain active until
either cleared by the individual (on completion or failure) or until they are overwritten by
new orders from the squad leader.

t(s)
Helghast

ISA

6⅔s

Helghast

ISA ISA

3⅓s

 33

Individual soldiers inform their squad leader whenever they completed an order that
was issued by the squad leader. Individual soldiers also share information on threats
they encounter. A message is sent whenever the individual

• encounters an enemy for the first time.

• loses track of an enemy.

• observes one of his threats has been killed.

The messages sent by the individuals are not queued, though they are saved until the
next squad update. The squad leader uses the feedback from the individuals to update
their record on the squad members’ states and to update its combat situation. (see
section 3.1.2)

Squad leaders inform the faction leader whenever the squad members engage in
combat and they inform the faction leader when an order that was sent by the faction
leader cannot be completed. Both messages are delivered using a callback
mechanism on the faction leader. The messages are processed directly and influence
the behavior of the faction leader the subsequent updates.

The following subsections will elaborate on the implementation of the strategy layer,
the squad layer and the individual layer.

5.1 Faction leader implementation

The faction leader’s logic is implemented in a C++ class. This allows for direct access
to game data needed in the decision making process. Part of the logic is mission
independent and is therefore implemented in a base class that may be shared over
multiple types of faction leaders.

Figure 13: Excerpt of Figure 11, showing the main components of the faction leader.

Figure 13 schematically shows the base components of the faction leader. By
design, the three main components of the faction leader do not need to be executed in
sequence, or even at the same frequency. For example, if the calculation costs for the
Strategy Parameter Manager are high, the update frequency of this component may be
lowered as compensation. The other two components will just use the last calculated
parameters. For the implementation of Capture and Hold however, the three
components all depend on the evaluation of tactical information on the Capture and
Hold areas. The base components of the faction leader are implemented as three
methods, which are called in sequence every time the faction leader is allowed to
update, but only after the tactical information on Capture and Hold areas is evaluated.

The first part to execute, the ‘Strategy Parameter Manager’ determines the global
aggressiveness of the strategy. For game modes that have a single target for each of
the factions, the Strategy Parameter Manager would calculate the number of desired
attackers versus defenders For capture and hold it calculates the desired number of
captured targets (capture and hold areas). This is the amount of areas that are
attacked and / or defended simultaneously. The Mission Strategy Executive selects

 34

targets and creates tasks and a desired division of forces over these tasks in terms of
soldiers per task. The output of this component is used by the third part, the Group
Manager. This part creates squads, reorganizes the bots to fit in these squads and
sends out the tasks that need to be executed.

In addition to this sequence, the faction leader contains a number of methods that
are called on a request (callback) basis. This is because the timing of these methods
cannot be synchronized with the update frequency of the faction leader. The game
spawns new players at set intervals. Since the faction leader is only updated once
every 6⅔ seconds, it cannot determine spawn locations for bots in advance, as events
in the running game may change the available spawn areas within those 6⅔ seconds,
invalidating the previous spawn area choices of the faction leader. To circumvent this
problem, the logic that assigns bots to their spawn area is called on request at the
moment players are allowed to spawn. Other callbacks are used for processing
messages sent by squads. By introducing a message queue, this last part could
become synchronized with the faction leader update. However, for the current
implementation there was no benefit in combining the processing of multiple
messages.

For each objective, the faction leader keeps a record of tactical information. This
comprises information used in target selection and spawning. The information provides
answers to the following questions, indicating which objectives have the best chance of
being captured successfully, or which objectives should otherwise be preferred:

1. Is the area currently captured?
2. Is the area neutral?
3. Is the area currently targeted (for attack/defense) by a friendly squad?
4. What is the nearest usable spawn location to the area? At what distance?
5. How many times did a squad get attacked while targeting the area?

The answers to the top two of this list can be determined directly. The answers to
number 3 up to 5 are updated by several parts of the faction leader: An area is
considered targeted once the order has been given to capture it. This indication
remains until either the area is successfully captured, or the squad has indicated that
the task to capture the area has failed. The nearest spawn area is reevaluated every
update by the ‘Strategy parameter manager’. Whether or not a Capture and Hold area
is targeted depends in part on the distance to this nearest spawn area. Number 5 on
this list is only influenced by the messages received from squad leaders.

Most of the information the faction leader uses to make its decisions is highly dynamic
and thus has to be queried every time. The locations of spawn areas and objectives
however, do not change during the execution of the game. The distances between
spawn areas and objectives are most important to the faction leader’s logic. It will
search for the closest spawn area every time a spawn area has to be picked for a
selected target. Instead of constantly recalculating those distances and sorting the
results, the distance calculations and list sorting are done at initialization.
Subsequently, for every Capture and Hold area, a list is constructed of all spawn areas
augmented with their distance to that specific Capture and Hold area. The resulting
table can be used to quickly find the closest spawn area for an objective.

 35

The following sections describe the inner workings of the most important parts of the
faction leader’s implementation.

5.1.1 Strategy Parameter Manager

The Strategy Parameter Manager implementation for Capture and Hold does two
things. It determines the number of captured areas that are needed to prevent the
other faction from winning and it evaluates tactical information for every Capture and
Hold area.

A simple heuristic for the number of areas needed to win the game is half the
number of areas plus one. The score gained by capturing and holding this number of
objectives will ensure victory. Unfortunately this only holds under the proposition that
areas are not recaptured and that the score balance will only be influenced by the
captured areas. This is rarely the case. The paragraphs below describe how the
desired number of areas is calculated, taking into account the current difference in
score and the rate at which the enemy earns points for kills.

When a Capture and Hold area has been captured, the team that has ownership
receives points every tick. GainPerArea in Figure 14 represents the amount of points
that is gained by capturing an area and holding it until the end of the game round.

ickPointsPerT
TickLength

ingTimeRemain
aGainPerAre ×=

Figure 14: The number of points that can be obtained
by capturing an area and holding it until the end of the game.

For Capture and Hold, captured areas are not the only source of points. The Strategy
Parameter Manager must take into account the number of kills made by both teams
and must compensate the desired number of areas accordingly. Initially, the bots would
increase and lower the desired amount of areas based on how well the bots performed
at making kills. However, in one of the test games, the bots lowered their desired
number of areas to one, thinking that they had already won the game. This caused
them all to gather around a single area which in turn caused an unforeseen drop in the
points that were collected for kills. The bots managed to play even, but it showed that
the prediction needed to be adjusted.

The prediction assumes that the score awarded for making kills is increasing at a
constant rate throughout the game for both teams. The final formula only uses an
EnemyGainByKills, which represents the potential lead which the enemy will get by
acquiring points for kills (if any). If the bots acquire more points on kills than the enemy,
this is not taken into account.

The calculation of the DesiredNumberOfAreas assumes that areas are always
captured by either team. Effectively, areas which are not captured by ones own team,
are assumed to yield points for the enemy. Assuming neither team has a lead, the
required number of areas to prevent the enemy from winning the game round is half
the total number of areas. If either of the teams has a lead, this may affect the number
of required areas. Figure 15 shows how the EnemyGainByKills is predicted and how
the DesiredNumberOfAreas is determined.

 36

×

−
= ingTimeRemain

dTimeElapse

KillsOwnScoreByByKillsEnemyScore
yKillsEnemyGainB ,0Max

×

−+
+=

aGainPerAre

OwnScoreyKillsEnemyGainBEnemyScoreNrOfAreas
berOfAreasDesiredNum

22
Ceil

Figure 15: Heuristics to determine the number of Capture and Hold areas that must be
captured and held until the end of the game to prevent losing the game round.

There is another task this part performs. It updates the tactical information on the
objectives. It uses the distance table and the data on which areas are captured by
which faction to determine the best available spawn area for each of the objectives.
Together with the chosen spawn area it also stores the distance. The spawn area
selected by this process is used to spawn the bots. By updating the tactical
information, areas that have been successfully captured are deregistered as attack
targets.

5.1.2 Mission Strategy Executive

The Mission Strategy Executive takes care of target selection, task creation and a
division of forces to carry out these tasks. It controls how many bots go where to do
what. It takes the desired number of areas from the Strategy Parameter Manager,
subtracts the current number of captured areas and selects that many targets.

Objectives that are currently already targeted are considered most important. This
prevents swapping of targets after the orders to capture an area are sent. Next are
neutral targets. At the start, all objectives are neutral, meaning that neither of the
factions has captured the area. During the game, it may happen that a contested
objective is left unguarded by both factions (after a fight), making it neutral. In both
situations capturing this area will probably yield a source of mission points without
much effort. Attacking an area which is captured by the enemy will both yield a source
of mission points and take away that same source of points from the enemy, but at
greater costs. Because of the smaller required effort and the assumption that neutral
areas would be captured by the enemy otherwise, neutral areas are preferred targets.

Another criterion used to select targets is the number of attacks that squads have
encountered while targeting this area. This includes the situation where an area is
already captured and a squad is defending it and the situation where a squad is sent
out to attack an area. This mechanism is intended for whenever attacks launched at a
certain objective fail repeatedly. In this case, another target will be chosen. To prevent
twitching by this mechanism, it will only influence comparison if the difference in
registered attacks is more than 10. The last criterion, but one of the most important
ones is the distance to the best / nearest spawn area. Objectives that have a smaller
distance are preferred.

When the targets have been selected, the number of bots available is divided over
the selected targets. The default strategy implemented for Capture and Hold, hereafter
designated as Group strategy, will assign scouts to those areas that were not selected
as targets. These scouts are sent to ensure that no enemy objective is left unguarded.
Subsequently the other bots will be divided evenly over the targets. To prevent
remainder bots (i.e. 7 bots / 2 targets) from constantly being reassigned, areas of equal
interest are always considered in the same order. For example, for 8 bots, 3 objectives,

 37

2 of which are targets this will result in a division of 4-3-1. Figure 16 shows this task
division as the active one in a bot test game.

Figure 16: In game debug view of a bot test game in progress. The interface shows the current division
of bots over the Capture and Hold areas. (CAHArea1: 4 bots, CAHArea2: 3 bots, CAHArea3: 1 bot)

5.1.3 Group Manager

The Group Manager takes the tasks and the division of forces as produced by the
Mission Strategy Executive and applies it to the current state of the game. It does so by
creating or removing squads, reorganizing their members and order squads to perform
their tasks.

As with the selection of targets, this part is implemented with the goal of continuity
of the AI’s behavior in mind. It will keep all squads that are already doing one of the
tasks requested by the Mission Strategy Executive. This combines nicely with the
Mission Strategy Executive’s system of keeping the same targets active while they are
still actively being attacked. Together these rules will make sure that no squad ordered
to attack an area will be sent new orders until they either succeed or signal their defeat.

When making sure that there is one squad for each task that needs to be executed,
squads that already exist are preferred over the creation of new squads. Members of
existing squads are likely to be near each other. By keeping them on the same teams
they will not have to cross the level in order to join another squad. This could otherwise
decrease their chances of survival. After this step, any abundant squads are
disbanded.

When the number of tasks and the number of squads is equal, the sizes of the
squads are checked against the desired sizes indicated by the Mission Strategy
Executive. Members in squads that are too large are removed from their squad. To
prevent the removal of members that are in the middle of executing orders sent to them
by their squad leader (causing the appearance of indecisive behavior), dead squad
members are preferred, followed by squad members that are not executing orders. The
bots that are freed are subsequently reassigned to the squads that are too small. An

 38

example of input and output of the three main components of the faction leader can be
found in Figure 17.

Squads that need new orders are informed of this fact before they actually receive
the new order. The warning (an order to ‘start a new operation’) and the order itself are
sent in a sequence, queuing them at the squad leaders side. Processing the order to
‘start a new operation’ will cause the squad to reset its own status (see section 5.2.2) in
preparation of a new task. Subsequently, the squad leader will be given its new task.
Since the multiplayer squads do not behave proactively, the priority of the orders is set
to the highest level.

Figure 17: Slightly simplified example (some area information has been left out) of the input / output of
the three main components of the faction leader for Capture and Hold. The Strategy Parameter Manager
determines the desired number of targets based on scores, the Mission Strategy Executive selects the
targets and generates a task division. The Group Manager takes the current task division and reassigns
bots to other groups as needed, (partially) overwriting the old task division. The Group Manager also
orders the group leaders to capture the area assigned to them. Individual bots are denoted as b1-b8.

5.1.4 Callbacks

The faction leader’s implementation has two callbacks – subroutines that are not
executed as part of its regular update routine. These callbacks exist to enable the
faction leader to respond to or to reason about certain events directly as they appear.
One callback method selects spawn points for dead bots. The other callback processes
messages sent by squad leaders.

Spawn point selector
The spawn point selector is called at the moment players are allowed to spawn. Its task
is to assign spawn points to each of the bots that must be respawned. Between the last
faction leader update and the spawning of the bots, some of the Capture and Hold
areas may have been captured by the enemy and as such are not usable as spawn
point anymore (see section 1.2.4). This is why the tactical info on each of the
objectives is updated before any selection takes place. The spawn point that is
assigned to dead bot depends on the current task its squad is trying to execute, as well
as on the progress of the squad in executing that task.

 seconds_remaining(623)
own_score(total:80, kills:20)
enemy_score(total:120, kills:25)

>

 < desired_number_of_areas(2)

Strategy Parameter
Manager

 desired_number_of_areas(2)
number_of_bots(8)
area_status(area1, captured_by_enemy)
area_status(area2, captured_by_friendly)
area_status(area3, neutral)
other_area_info…

>

<

new_group_task(group_size:1, target:area1)
new_group_task(group_size:3, target:area2)
new_group_task(group_size:4, target:area3)

Mission Strategy
Executive

 group_task({b1, b2, b3, b4}, target:area1)
group_task({b5,b6,b7}, target:area2)
group_task({b8}, target:area3)
new_group_task(group_size:1, target:area1)
new_group_task(group_size:3, target:area2)
new_group_task(group_size:4, target:area3)

>

Mission Blackboard

seconds_remaining(623)
own_score(total:80, kills:20)
enemy_score(total:120, kills:25)
desired_number_of_areas(2)

number_of_bots(8)
area_status(area1, captured_by_enemy)
area_status(area2, captured_by_friendly)
area_status(area3, neutral)
other_area_info…

group_task({b1, b2, b3, b4}, target:area1)
group_task({b5,b6,b7}, target:area2)
group_task({b8}, target:area3)

new_group_task(group_size:1, target:area1)
new_group_task(group_size:3, target:area2)
new_group_task(group_size:4, target:area3)

group_task({b1}, target:area1)
group_task({b8, b2, b3, b4}, target:area3)

<

group_task({b1}, target:area1)
group_task({b5,b6,b7}, target:area2)
group_task({b8, b2, b3, b4}, target:area3)

Group Manager

 39

As a rule of thumb, bots are best spawned at the spawn point that is closest to the
target of their squad. In this context, the distance is used as an estimate of the risk of
getting killed while trying to reach the target. Bots that have to move over greater
distances generally have a higher chance of getting killed before even reaching the
objective.

The nearest available spawn point can be directly retrieved from the tactical
information on the objective that that bot’s squad has targeted. (see section 5.1). For
Capture and Hold, it may not always be the best option to spawn at the nearest
available spawn point right away. When the nearest available spawn area is far away;
bots could take quite a long time to reach their objective again. Bot tests that are not
further discussed in this paper have shown that by the time the bot reaches the battle
area again, the outcome of the fight is often already decided. The squad may have
failed in capturing the objective in which case squad members need to regroup before
trying again, or the squad may have successfully captured the objective in which case
it needs to set up a strong defense to hold the objective. Both squad regrouping and
area defending are explained in section 5.2.2.

Given that regrouping is a less urgent operation than establishing a defense for an
objective that has just been captured, it is best to postpone the spawning of bots until
the outcome of the fight has been decided. This delay is implemented in the spawn
point selector. While the attack on the target objective is still in progress, dead
members of the attacking squad do not receive a new spawn location, which effectively
prevents them to spawn too early.

Squad message receptor
The second callback processes any messages sent by squad leaders. For Capture and
Hold, the squad leaders may send two kinds of messages:

• (engaged_in_combat)

This message indicates that the squad encountered new enemies and has engaged
in combat. When this message is received, the faction leader will take note of the
squad being attacked by incrementing the appropriate counter for the objective
targeted by the sender. This will give a negative bonus to the target objective which
will affect subsequent target selections.

• (task_failed)

This message is sent by squad leaders to indicate that the last task assignment
from the faction leader could not be completed successfully. For Capture and Hold,
this means that the attempt to capture the objective failed. When this message is
received, the objective in question will be un-targeted, allowing the faction leader to
switch targets the next update.

5.2 Squad leader implementation

As described in 5.1.3 Group Manager, the faction leader will send the selected target
as an order for the squad leader. The squad leader targets the area that was last
received from the faction leader. For Capture and Hold, the action of attacking an area
will, in case of success, always be followed by the defense of the captured area. The
faction leader does not send an explicit order to capture or defend an area after it has
been attacked and all enemies have been defeated, these orders are all implicitly given
by the initial order to target a certain area. It is because of this that the squad leader
never clears the order to target a certain Capture and Hold area, unless it has been
given orders to target another one.

 40

To switch targets, the faction leader sends out a new sequence of orders,
overwriting the current one, starting with an order to ‘start a new operation’. This first
order will cause the squad leader to discard any data related to the operations
centered on the previous target area. Subsequently, the second order will reinitialize
the squad leader in order to start advancing towards the new target area. This solution
is specialized in handling and targeting of permanent objectives like Capture and Hold
areas. Objectives that must be killed or destroyed will require a different protocol.
Unlike the Capture and Hold task, the order to kill or destroy such objectives can be
completed since those tasks may end once they have been successfully executed.

After a target has been passed on, it is the squad leader’s responsibility to coordinate
the movements and combat behavior of the squad members in order to attack, capture
and/or defend the target area. It must tell the squad members where and when to
regroup and when to attack. It does so by issuing orders to the squad members.
Orders to move to specific locations, orders to attack Capture and Hold areas, orders
to report back to the squad leader and orders to stay within a certain set of area’s –
avoiding danger areas – while doing all this.

Since for the implemented strategies, the squad only uses actions that require
squad members to follow orders blindly without question, orders sent by the squad
leader always have the highest priority. From the rules of the game (see section 1.2.4)
mode Capture and Hold, it follows that capturing and/or defending areas is more
important than making individual kills or for individual bots, to stay alive.

During its operation the squad leader also uses feedback acquired from squad
members. For example, in order to keep track of the status of the squad member,
instead of constantly querying the status, the squad leader orders individuals to return
a message once another task has been performed. Squad members that have just
been added to a squad, inform their squad leader of this event. Additionally, squad
leaders receive messages from members when enemies are being spotted, are lost or
killed.

The last kind of communication that squad leaders need to handle is squad
messages. These are messages sent to the faction leader to aid it in making strategic
decisions. Whenever the squad leader decides that it can no longer execute the task
ordered by the faction leader, it will inform its superior. It will also send a message
once every time the squad engages in combat.

The logic of the squad leader is mostly implemented as an HTN domain. Every update,
squad leaders update their own state and traverse all their members to see if they
need (new) orders or if their recorded state needs to be updated. The structure of the
HTN domain is explained in section 5.2.2. The HTN knowledge-rules use information
and specialized routines provided by several daemons. These daemons are
specialized in providing squad member- and multiplayer information to squad leaders.
The squad daemons are explained in section 5.2.1. Furthermore, by grouping bots in a
squad, several individual actions can be coordinated without explicit planning. These
behaviors are explained in section 5.2.3.

5.2.1 Squad Daemons

The multiplayer squad leader uses several daemons. Some of the information provided
by these daemons is inserted to the squad leader’s database every update. Other
information is too time expensive to compute every time and is therefore provided only
on request.

 41

The most general squad daemon can be used for squads in single player games as
well. It converts squad member messages and inserts them into the database. Both
fixed messages about enemies and custom messages are converted to database
atoms.

Another daemon is meant specifically for multiplayer squad leaders. Multiplayer
squad leaders differ from squad leaders used in single player games in that they are
commanding AI players instead of one-life AI soldiers. Whenever a bot is killed, it
rejoins its squad once it has spawned again. Every squad uses a daemon that provides
a list of (living) individuals that are currently a member of the squad. To allow
multiplayer squad leaders to reason about all their members, the multiplayer squad
daemon provides a list of all AI players that are a member of the squad, also specifying
if these AI players are currently alive and playing or dead and waiting to respawn.
Additionally, this daemon shows which level is currently being played (to allow for level
specific tactics) and which mission or game mode is currently active (to allow for
squads that support multiple mission types).

Besides providing generic multiplayer information, this daemon also inserts mission
specific information into the squad leader’s database. Depending on the mission that is
currently active, this daemon provides information on the mission objectives. For
Capture and Hold it provides data on all Capture and Hold areas, listing their name and
state. This state indicates whether or not the area is captured or being captured and
which of the factions are involved. Instead of referencing the actual factions, the
daemon presents the information in terms of friend and foe.

An area may have any of the following states: captured by friend / foe, being
attacked by friend / foe, being captured by friend / foe or otherwise unknown. The
status of an area only comprises information that human players may also derive from
the feedback they receive from the HUD. Whenever a team of human players would
not be able to derive an area’s state, the daemon will list its state as unknown. This
may happen for example in the case of a neutral area being captured by the enemy.

The information that is only available on request concerns the regrouping of squad
members. To start the regrouping action, squad leaders request a regrouping waypoint
which is selected from a list of candidate waypoints based on the current positions of
all group members. Subsequently it requests an ETA of the bot that is furthest away
from the chosen waypoint. This value is used as a timeout for the regrouping behavior.

Figure 18: Left: Capture and Hold squad states
Right: Capture and Hold squad member states

regroup

defend

start attack

ordered to regroup

arrived at regroup

ordered to attack

not ordered

 42

5.2.2 Squad HTN Domain

The multiplayer squad HTN domain used for Capture and Hold contains level specific
information on regroup locations and on which areas are considered dangerous
depending on which objectives are captured by the enemy. When a squad is created,
the squad leader’s HTN domain initialization rules will fire, remembering this level
specific information in the database. All subsequent updates will cause the planner to
construct a plan that both updates the internal state of the squad leader and possibly
sends orders to every squad member.

The squad leader keeps track of its own state as well as the state of each of the
squad members (concerning the execution of orders). The rules in the domain specify
the transitions between these states. The left diagram in Figure 18 provides an
overview of the squad leader FSM, displaying all states and transitions. The right
diagram displays the states of squad members as recorded in the squad leader’s
database. Whenever the squad leader receives the order to start a new operation it will
reset itself to the starting state, regardless of its current state. Additionally, all recorded
states of squad members will be reset.

Once a substantial part of the group (more than half of the squad) is accounted for,
the regrouping will start. Members are ordered to a specific regroup location and their
state is updated accordingly. Members that arrive at their location message the squad
leader, which causes the member state to be updated. Once all members have arrived,
or once the action times out, whichever comes first, the state is changed to attack. In
this state, all members still waiting for orders are ordered to go to the Capture and Hold
area and once again, their state is updated. Squads that only comprise one bot skip
the regroup phase since there is little purpose in regrouping one soldier.

Since there are two possible outcomes for a fight, there are two state transitions
from this state. Either more than half of the squad gets killed and the squad is
considered defeated (not depending on the number of enemies), or the squad
manages to start capturing the target area. In the first case, the squad will reset to the
starting state. Remaining bots that are still attacking continue in such a case, as they
would most likely not survive a retreat. This means that the state of these squad
members is not cleared. However, newly spawned bots will first go though the regroup
process again before attacking once more. The faction leader is informed of this event,
which allows the faction leader to assign the squad to a new target. In the second case
(the attack was a success), the state changes to defend. Since the change of faction of
a Capture and Hold area is directly visible to the faction leader, squad leaders do not
need to inform the faction leader of this event. Changing to the defend status has no
direct implication on the current state of squad members as they do not need new
orders. As long as the area remains an active target for the squad, the squad members
will stay in the area. The defensive behavior of the individuals consists solely of the
default infantry attack / defend behavior. Improvements on this behavior are discussed
in section.

Changes in squad member states and squad leader states usually coincide. For
example, when changing from regroup to attack, all members are ordered to the target
area. There are some additional rules that reset squad member states for members
that died, for members that just respawned and for bots that were removed from the
squad altogether. This may happen when bots are reorganized to other squads.

Besides the orders to move to specific locations and orders to return messages the
squad leader also sends out orders to stay within certain areas within the level. To
prevent bots taking a path through an occupied Capture and Hold area that is not their
target, squad members are ordered to stay away from any non-target Capture and

 43

Hold area and its surroundings. To look up the right areas, the squad leader uses the
member’s current areas and the current target combined with the level specific area
information supplied at initialization.

5.2.3 Non-planned coordination

Besides the coordinated behavior resulting from explicit planning and ordering by the
squad leader, squad members can coordinate some of their individual actions in a
more simple way. This type of coordination is based on direct sharing of data between
squad members, for example the distances to common enemies.

Target selection greatly depends on the distance to the enemy. Enemies that are
close are often more important than enemies that are further away since they can hit
with greater accuracy. Normally each squad member chooses its target solely on its
own perceptions and distances to the enemies. By incorporating the distances of the
enemy to other squad members as well, multiple squad members will conclude that the
same enemy soldier is their greatest threat and should be targeted. By concentrating
their fire this way, the enemy forces will decline more rapidly.

A similar solution is used for dividing scanning waypoints over multiple squad
members. It ensures that squad members scan different locations. The validity of both
constructions is based on the assumption that human players within the same team
may freely exchange information about their location and their enemies.

5.3 Individual implementation

For the most part, the multiplayer bots are controlled by the same knowledge base
as the one used for the behavior of AI soldiers in the single player game. In contrast to
single player AI soldiers, which are primarily meant to be smart looking cannon fodder,
multiplayer bots should act more like simulated human players. (See 1.2.2 Bot AI
versus single player AI) To accomplish this, bots are set never to display relaxed
behavior and to always suspect enemies. To reflect human movement, the bots run at
maximum speed as long as they did not identify any threats. Bots use weapon settings
identical to human players (weapons shoot just as good/bad as for human players) and
receive an amount of health points identical to human players. The bots’ perception
and aim tries to approach that of an average player.

Additional code enables the individual bots to execute the orders sent by their
squad leader; capturing an area and returning messages to their squad leader. A
special daemon provides a call term that will select a position within a requested
Capture and Hold area. This daemon randomly selects waypoints from the set of
available locations inside the area. A specialized task enables the explicit sending of
squad member messages.

 44

6 Evaluation

In this chapter, the multiplayer bot system and the Group strategy for the game mode
Capture and Hold are evaluated. Section 6.1 discusses a series of test rounds that
were performed in which teams of human players battled against the bots. The
feedback from these tests provide information on the entertainment value and difficulty
of the bots. Section 6.2 discusses a comparison between the Group strategy and the
Domination strategy of Killzone. Section 6.3 shows by example, how much code may
be reused for the implementation of an AI strategy for another game mode.

6.1 Test rounds

Two of the evaluation criteria as specified in section 1.6 can only be tested by means
of game tryouts. By organizing several test rounds with different teams and processing
their feedback, we acquire an indication of the entertainment value and the difficulty of
the bots. In addition, direct feedback from test players can tell us if the players take
notice of the organized behavior of the bots. Section 6.1.1 describes how the tests
were set up and performed. Section 6.1.2 explains which questions were asked to
gather feedback. Section 6.1.3 discusses the results of the test rounds.

6.1.1 Test rounds setup

At the time of the development of the bots, no one outside Guerrilla or Sony was
allowed to see Killzone 2. Therefore, employees of Guerrilla were used as test
subjects. The bots were tested against three human teams, namely members of the
game design team, the art team and the game code team respectively. The first two
teams played three consecutive rounds and the game code team played two rounds.
(Due to technical problems, not related to the AI and outside the scope of this thesis,
their third round was cancelled.)

All test rounds had a team of 8 human players, all playing as ISA, battling against a
team of 8 bots, all Helghast. For the purpose of making screenshots and video
captures of the game in progress, a ninth Helghast player was used as an observer. All
test games were played on Southern Hills, the only mission being a 15 minute Capture
and Hold.

Since the bots did not have any behavior for using grenades, these were excluded
from the game. The only available weapon was the standard rifle. To make sure
neither of the teams would get the advantage of starting early, the game was not
started until all players were ready. At the end of each round, the final score was
logged. At the end of the final round, the team of participants sent their feedback.

6.1.2 Feedback questions

To get the best out of the feedback, each of the participants was asked to answer a
number of questions. Instead of asking directly if the bots were fun or hard to play
against, we have asked them to answer the following questions:

• What is your general impression on the bots?

• What kind of strategy or tactics did you notice?

• Did their behavior look organized? (please comment)

• Did their behavior look intelligent? (please comment)

• Did their behavior look human like? (please comment)

• What did you think of the difficulty level of the bots?

 45

• Do you have any suggestions?

By asking these questions, we attempt to indirectly find an answer to the question
whether or not it is fun to play against the bots, without ‘steering’ the answers of the
participants. Bots that display recognizable behavior, intelligent behavior or organized
behavior are fun (more) to play against. If we find that the participants recognized
organized behavior, or perhaps even classify the behavior of the bots as intelligent, this
is an indication that the bots are fun to play against.

In any game of competitive nature, opponents that are challenging but not invincible
are the most fun opponents. Finding out how hard it is to beat the bots is therefore a
part of determining their fun factor. Most employees of Guerrilla exceed the skill of a
novice player of FPS games. At the date of these tests, all these employees had been
attending multiplayer play tests (without bots) weekly for about three months. This
means that if the contestants think the bots are hard to beat, novice players will have
an even harder time beating them. On the other hand, if the contestants think the bots
are easily beaten, this does not necessarily mean that novice players would think the
same.

As a last question, asking for suggestions may reveal the contestants’ opinions on
which part of the bots’ behavior could be improved.

6.1.3 Results test rounds

Out of the 24 participants, 18 responded and sent answers to the questions. Not all of
the respondents answered all questions separately, and some of them provided
additional remarks in their answers that were not directly related to the questions.
Therefore, this section does not discuss the feedback by reviewing the answers per
question, but instead focuses on difficulty, entertainment value and otherwise the most
common remarks in the participants’ feedback. Quotes are marked anonymously with
the respondent’s number and department name.

Test rounds scores
The final scores of all test rounds can be found in Table 2. The bots did not win any of
the test rounds, but did manage to play even with the art team once. The three teams
performed quite differently. The best human team seemed to be the design team. This
may have something to do with the fact that they were located in the same room and

Round Human team Bot team Ratio

Design 1 345 133 39%
Design 2 355 108 30%
Design 3 338 104 31%
Art 1* 97 89 92%
Art 2 275 132 48%
Art 3 192 192 100%

Code 1 280 129 46%
Code 2 269 137 51%

Table 2: The final scores of the test rounds. The ratio shown is the
bot team score divided by the human team score. The ratio is
provided to give a quick overview of the bot team scores

 compared to the human team scores.
*) The final score for this round was not recorded.

This is the last known score at 8:06 / 15:00.

 46

communicating, giving each other orders while playing the game. The difficulty as
reported by each participant, however, did not seem to be related to the score ratios of
the participant’s teams. Most of the respondents (13) characterized the difficulty as
“challenging”, “about right”, “tough but beatable”, “pretty solid” or “medium”. A minority
(4) reported that they found the bots “pretty hard” or “hard to beat”.

“I think [the difficulty] was about right, I felt they were tough but beatable. So you don't get the feeling
that it's unfair and you still get some sense of achievement for killing them.” (design/3)

Awareness of cooperative behavior
All but one of the respondents noticed the bots’ grouping behavior. They saw the bots
moving around and attacking in groups. Some noticed the bots defending Capture and
Hold areas as a group. A smaller number of respondents also reported that they
noticed that the bots divide their forces amongst multiple targets. One respondent
noticed that the bots wait to regroup before initiating an attack.

“They seemed to wait till they weren't alone before moving. And some remained to guard the bases.”
(design/3)

“They tended to group very well, it seemed rare or never that a lone AI would be charging in somewhere.
We also learned that if we fended off an assault on a particular base that we could expect one of the
others to be under attack shortly (if not already).” (design/4)

Human like / Intelligent
Most respondents thought the grouping of the bots made their behavior look human
like and / or intelligent. The fact that they often ignored threats and did not use cover
when traveling made the bots seem much less intelligent and human like according to
eight of the respondents. This is most likely caused by the fact that the squads use
orders at the highest priority (as described in section 5.2), since capturing or
neutralizing the objective is more important than killing the enemy. This does however
make the bots less human like. The target selection described in section 5.2.3 which
was introduced to increase the squads’ chances of survival also seems to have some
unexpected non human like results. The way the squads move was said to be “ant
like”, as all squad members choose identical paths and end up walking directly behind
each other in a long line. Apart from that, the most mentioned remark is that the bots
did not seem to have any notion of chokepoints or entry locations for the areas they
were guarding.

“Sometimes they would seem to charge an objective and not deal with near by threats. Some times they
would ignore me if I was not firing and someone else was even though I was a lot closer.” (design/1)

“They are acting like ants sometimes, coming in large lines.” (art/13)

“To defend a spot they would just stand in one spot and scan. (…) Humans would defend the
chokepoints to an objective area before the actual objective itself.” (design/4)

Accuracy
More than half of the respondents (11) commented on the shooting accuracy of the
bots. However, apparently, the opinions on the accuracy of the bots are quite diverse.
One respondent from the design team characterized the aiming of the bots as “very life
like”, while two others from that same team commented “They were obviously bots.
Often very accurate when I wouldn’t be.” and “They were remarkably accurate.”. In the
art team, two respondents approved the aiming skills of the, while four others again
classified the bots’ aiming as “superior” or “unnaturally good”.

 47

In the code team, respondents mentioned “They aren’t accurate enough at long
range vs. (almost) static targets” and “On one-on-one shoot outs they lost. Also I
noticed that they were very good in aiming at long distances, but only in open areas”.

It seems that the optimal aiming skill for the bots is dependant on personal
preference and skill of the human player. It may be worth investigating how the optimal
aiming skill of AI controlled players can be determined, or how a difficulty setting could
be used to accommodate both novice and advanced players.

Entertainment value
As part of the development of the multiplayer game modes of Killzone 2, multiplayer
builds are tested regularly. In many of these test games people just run around without
actually playing the game mode. During the multiplayer bot tests however, participants
started to play in a much more organized and strategic fashion. Since the bots played
in such an organized fashion, this forced players to cooperate more themselves. The
players of the design team, which were mostly in the same room at the time of the bot
test, actually communicated by shouting orders and information on the bots behavior to
each other. Besides these observations, ten of the eighteen respondents explicitly
mentioned that they enjoyed testing the bots, calling them “[very/good] fun”.

“They are pretty solid! It was good fun to play against them. Luckily we managed a draw the last
game…” (art/10)

6.2 Strategy comparison

This section describes how Killzone’s AI for the multiplayer game mode Domination
was translated and tested against the new Group strategy for Capture and Hold. The
results of these test rounds should answer the question if the changes and
enhancements in cooperative behavior provide the new strategy with an advantage.
Section 6.2.1 discusses the translation of Domination to the new system, section 6.2.2
describes the test setup and 6.2.3 visualizes and discusses the results.

6.2.1 Implementing the Killzone Domination strategy for Killzone 2

In order to make a comparison between the Domination strategy (as described in
section 3.1.7) and the new Group strategy possible, the Domination strategy had to be
‘translated’ in order to fit into the new bot architecture. This section describes how the
Domination strategy fits into the new system. It also addresses the problem that
caused bots never to defend switches. and it introduces some changes to the
Domination strategy that makes it up to date with the new rules of Capture and Hold.

Translating Killzone’s Domination into a Strategy for Killzone 2
For Domination in Killzone, all individual bots were controlled by one central process.
This process translates without many problems to the faction leader structure
described in section 4.2. The flow of the Domination strategy is based on a desired
number of attackers. The function of this variable is much like that of the desired
number of captured areas for the Group strategy. Like the desired number of areas, the
desired number of attackers is calculated in the Strategy Parameter Manager.

In contrast to the new strategies, the Domination strategy does not use groups /
squads. Therefore the faction leader’s implementation does not include a Group
Manger. There is also virtually no reason to include the layer of Group Leaders, except
for the fact that that individual bots cannot directly communicate with the faction leader.
A single ‘squad’ is used to facilitate in the communication. It functions as an

 48

intermediary, passing through all messages from individuals to the faction leader. The
faction leader on the other hand can send orders directly to individual bots.

Under normal circumstances for the new strategies, the faction leader creates
squads when needed and assigns orders to these squads immediately. The squads
remember their orders and commence the execution as soon as squad members have
spawned. For Domination however, this does not work, as it does not use squads. As
long as the individual bots are not spawned, they cannot be ordered. To cope with this
problem, the faction leader uses a list of bot players instead of spawned bots to keep
track of assigned roles and targets. (This is similar to the squad keeping track of dead
squad members.) During its update, the faction leader selects a target and assigns the
attacker role to dead bots. Whenever a message from the squad confirms that the bot
has been spawned, the faction leader will send out the orders according to the
previously selected target.

Since we would like to attribute any improvement in performance of the new
strategy to the new coordination of the bots, we must rule out differences between the
two tested strategies with respect to individual behavior. No attempt has been made to
mimic the properties of the individual behavior of Killzone’s bots playing Domination.
On the level of individual behavior, the tested strategies are using identical knowledge
domains.

Repairing the Domination strategy
The logic of the original Domination faction leader would only allow an attacking bot to
change role if there was another defending bot that could change its role to attacker.
However, it would change defenders into attackers to get the balance between
attackers and defenders right, even before considering changing attackers to
defenders. As a result, bots would never defend switches. By reversing the order, the
faction leader now changes attackers into defenders at captured switches before
restoring the balance of attackers versus defenders by removing defenders from the
best defended switches. Since capturing an area takes more time than capturing a
switch in Killzone, the logic was changed slightly to make sure that Domination bots
can actually capture an area. They no longer switch targets immediately when they
arrive at an area which has not (yet) changed faction.

Game mode Domination versus Capture and Hold
An important difference between the Domination game mode and Capture and Hold is
that the latter allows bots to spawn at captured areas as well as at spawn points that
reside within their home base. This increases the value of captured areas as
reinforcements may spawn at these locations and, as a result, these areas they may
be used as a secondary base from which an assault can be launched. The new Group
strategy incorporates rules to take advantage of this feature. To prevent an unfair
advantage of the new strategy with respect to the use of spawn areas, the strategy
based on Domination uses spawn areas the same way. Bots are spawned at the area
which is nearest to their target.

6.2.2 Performing strategy comparison

To test if the new strategy outperforms the domination strategy from Killzone, the two
strategies were set to battle against each other, without intervention from human
players. The game was set to automatically restart after each round. At the end of each
round (once the time limit had been reached), the score of each faction was logged.

 49

Figure 19: The spawn selection overview of the Southern Hills multiplayer level.
Each dot indicates the position of a player. ISA are indicated in green, Helghast in red.
In this setup, the Helghast split up into two groups + 1 scout, while the ISA are using

a strategy that makes them operate in one large group. (see section 6.3.1)

The test rounds were all performed on the Southern Hills multiplayer map, playing a 15
minute game of Capture and Hold. Even though the layout of this map is symmetrical,
there are small differences between the ISA and the Helghast side of the level. As
these differences could cause, for example, the ISA to arrive at their designated target
just a few seconds before the Helghast, these differences could interfere with the test
results. To even out this bias, half of the tests were done with the ISA playing the
domination strategy and the Helghast playing the new Group strategy, while the other
half of the tests had the strategies switched.

6.2.3 Results strategy comparison

To help interpret the data and to draw some conclusions, the data needs to be
presented in a way that makes the difference between the two strategies apparent.
Since there are many ways in which the data could be presented, we will discuss a few
of them and elaborate on our choice.

When visualizing scores, it may be intuitive to choose for the score ratio. The ratio
can summarize the results by showing by which percentage the new strategy
outperforms the old one. Unfortunately, the ratio cannot be used in a histogram to give
a more detailed overview of all test rounds. This is caused by the asymmetric view that
the ratio provides. In a histogram using bins of equal size, a ratio of 1.0 – 1.2 does not
mean the same thing as a ratio of 0.8 – 1.0 does for the enemy. This problem can be
solved by adapting the bin sizes, however, non uniform bin sizes would make the
overview less readable.

Contrary to the ration, the score difference is a symmetrical measure of
performance of both. A score difference of 20 would mean the same thing as -20 would
for the enemy. The score difference can be used in a histogram, but it lacks the quality
of the ratio in indicating if a game was won / lost in a close match (200 to 220) or if the
game was won / lost by far (20 to 40).

To get the best of both measurements; the symmetry of the score difference and
the ‘achievement indication’ of the ratio, the performance is defined as follows:

 50

BA

BA
AB

ScoreScore

ScoreScore
rformanceStrategyPe

+

−
=

Figure 20: Symmetric strategy performance measure. Positive values
indicate strategy A outperformed strategy B and vice versa.

0

5

10

15

20

25

30

35

40

45

50

-15% -10% -5% 0 5% 10% 15% 20% 25% 30% 35%

StrategyPerformance based on TotalScore

F
re

q
u

e
n

c
y

Won by Domination strategy (14x) No w inner / Draw (1x) Won by Group strategy (159x)

Figure 21: Overview of the StrategyPerformance results of the 174
test games to compare the Domination and new Group strategy.

Figure 21 shows the StrategyPerformance of all 174 test games. Since both strategies
have a certain amount of randomness in them, it may happen by chance that one
strategy performs a better target selection than the other, resulting in a stronger
position for the first strategy. The game’s physics simulation adds another fuzzy factor,
as its results are not constant over multiple runs of the game. These factors however,
cannot account for the difference in the number of games that was won by either side.
The Domination strategy managed to win 14 games, while the Group strategy
managed to win 159. It also shows that for about half (77) of those 159 games, the
Group strategy managed to achieve ‘a greater victory’ than the Domination strategy
achieved in any the games it won.

6.3 System extensibility

This section discusses the extensibility of the multiplayer bot system. Section 6.3.1
describes how the current implementation of the Group strategy for Capture and Hold
may be extended to allow for more variation in bot behavior. Section 6.3.2 discusses
which parts of the code are generic and which parts would need to be changed or
updated if a new game mode were to be supported by the AI.

6.3.1 Extending the AI for Capture and Hold

Section 5.1.1 described how the Strategy Parameter Manager of the Group strategy
determines the number of desired captured areas. Any change in this component
results in very noticeable changes in the strategies. The default Capture and Hold
strategy always subdivides the bots into smaller groups. Depending on how many
areas are targeted, squads are formed and scouts are sent to harass bases that are

 51

not otherwise selected as targets. By fixing the desired number of areas to one, and
disabling the scouts, the bots become much more focused. The bots do not split up
anymore, but instead stay together in one large group. This provides a strong offensive
force. Figure 19 shows a test game between the Group and the Mass strategy in
progress. To increase the variation in the bots’ strategy, the Strategy Parameter
Manager could be extended to dynamically change the desired number of areas.

6.3.2 Adding AI for another game mode

To add a strategy for a new game mode, part of the code can be reused. This section
discusses which parts of the code could be reused and which parts should be rewritten
or changed if the multiplayer bot system were to be extended for use with the game
mode capture the flag (see section 1.2.1).

As first mentioned in section 5.1, part of the faction leader’s logic is programmed in
a base class, intended for reuse by other strategies for the same or other game modes.
The base class contains code for squad management, allowing for easy creation,
destruction and tracking of squads that command multiplayer bots. The squad
management also associates a strategy with the type of squad that it uses. For
example, the Group strategy uses squads that have a different HTN domain than the
squads used by the Domination strategy.

The faction leader base includes pair wise functions to retrieve the faction (needed
for example to determine which Capture and Hold areas are captured), the number of
completed / captured objectives, the mission score and the total number of objectives,
each for the friendly and enemy faction.

Furthermore, the faction leader base defines the interface that attaches the faction
leader to the game code. Each implementation of a faction leader must specify an
update function. For the Capture and Hold Group strategy implementation, this function
updates the faction leader’s three main components, as discussed in section 5.1. The
interface does not contain separate entries for these three components, as
implementations are not expected to use identical update sequences for these
components. Another mandatory function is the spawn point selector as discussed in
section 5.1.4. Handling squad messages is optional, as not all strategies would require
squads to communicate to the faction leader directly.

Capture the flag focuses around two objectives; the enemy flag, which needs to be
captured and brought to the home base and the friendly flag which needs to be
guarded or recaptured when stolen by the enemy. The Strategy Parameter Manager
would in this case divide the total number of bots over the two objectives. The Mission
Strategy Executive would assign all bots to attacking or defending squads. The
callbacks described in section 5.1.4 need a new implementation as both the selection
of spawn points and the processing of squad messages are game mode specific.

The squad layer also contains parts that may be reused for the implementation of
squads for other game modes. The multiplayer squad daemon described in section
5.2.1 provides game mode independent information that most multiplayer squads
would use. (squad member, level and mission information)

Squads that are using squad states and squad member states as described in
section 5.2.2 can reuse a large part of the squad HTN domain. The state transitions as
shown in Figure 18 are encoded in two methods, one that controls the squad state,
and one that controls the squad members’ states. These two methods must be
rewritten to support the capturing and defending of flags. The mechanism that resets
squad (member) states is located outside these two methods and may remain
unchanged.

 52

7 Conclusion

7.1 Objective

The primary objective of this study is to answer the following question: How may the
Killzone 2 AI system be used to create an extensible multiplayer bot architecture that
supports the development of entertaining multiplayer bot AI which is more challenging
than the multiplayer bot AI of Killzone 1? Section 7.1.1 discusses this question, while
section 7.1.2 will answer the secondary questions on the use of the HTN planner.

7.1.1 Multiplayer bots for Killzone 2

In chapter 4 and 5 we have discussed the design and implementation of a system
capable of controlling multiplayer bots in Killzone 2. The system has been designed
with a focus on cooperative behavior. It supports controlling the bots in an hierarchical
fashion. On top of the hierarchy, there is one coordinating process called the faction
leader, which divides the bots in smaller groups. To accomplish the goals set by the
rules of the multiplayer game mode, the faction leader sends orders to these groups.
Each of these groups is coordinated by group (or squad-) leader which receives orders
from the faction leader and delegates them by sending orders to group members.

To ensure extensibility of the system, both the faction leader and the group leader
have been designed and implemented in a game mode independent way (see section
7.3). This allows for future support of other game modes. We have shown by example
that the system supports the creation of bots for the multiplayer game mode Capture
and Hold (described in section 1.2.4).

The implemented strategy for Capture and Hold has been tested against human
players and against a translated version of Killzone’s multiplayer bot AI to assess the
entertainment value and difficulty of the bots. (see section 7.3 for a summary).
Although it could not be tested if the new AI is more challenging than the AI from
Killzone, the new AI is more focused on coordinated behavior, which increases the
need for human opponents to coordinate their own actions order to win.

7.1.2 Using the HTN planner for multiplayer bots

As explained in section 3.2 , the HTN planner’s main strength is the execution of logical
operations, interpreting knowledge domains. The HTN planner is not tailored for
numerical operations. Since the faction leader’s task requires evaluation of heuristics
and the calculation of distances quite often, we have chosen to implement it in C++.
The squad leader is much less dependent on numerical operations. It’s main task is to
coordinate the actions of the squad members given a specific order from the faction
leader. Squad leaders are implemented using HTN knowledge domains.

One clear advantage of using the planner to construct squad behavior is the ease of
implementing state networks as described in section 5.2.2. The preconditions of the
knowledge rules can be used to monitor state changing conditions, while the planner’s
database may be used to save the current state, including that of all squad members.
This technique was used in the domain of the multiplayer squad for Capture and Hold
to accomplish an interruptible regroup – attack – defend sequence. (section 5.2.2)

Another advantage of using the planner is that it forces the developer to think about
which data is actually needed to make decisions during planning. Data must be
explicitly made accessible for use in the domains by creating a daemon that inserts the
data into the planner database. This could prevent some cases of cheating AI, where

 53

the developer uses information carelessly, without thinking if the information could
actually be deducted by a human player in the same situation as the AI controlled
individual.

Although the use of the HTN planner is convenient, the squad behavior could have
been implemented without it. The plans constructed by the squad domain consist of
sequences of orders and state changes. There are no squad tasks that implement the
regroup, attack or defend behavior. Instead the squad domain contains conditions for
switching between states, each switch causing new orders to be sent to squad
members. Section 7.4 describes a possible change in the implementation of the squad
leader that would use the HTN planner more as a planner, constructing sequences of
squad actions.

Besides not handling numerical operations elegantly, the HTN planner is inefficient
in indexing lists, picking elements at random, or shuffling a list of elements. There are
two tasks in the Capture and Hold scenario that required list indexing: squad leaders
choosing a regroup location out of several available and the individual soldiers
choosing a location within the target capture area. Since these tasks had to be
performed only incidental, both tasks were solved by creating a call term, regular C++
code, invoked when needed.

7.2 Deliverables

In chapter 4 and 5 we have discussed the design and implementation of both
deliverables. The first deliverable, the generic structure within the game’s AI system
that enables AI developers to implement behavior for each multiplayer game mode is
delivered by:

• The functionality and the interface of the faction leader base (section 4.2 and 5.1)
providing multiplayer squad management and communication to and from squad
leaders.

• The multiplayer squad domain structure allowing for the creation of ‘state driven’
squad member control (section 5.2.2) and the mission independent part of the
multiplayer squad daemon (section 5.2.1) providing squad leaders with information
on all multiplayer bot squad members.

The second deliverable, a single application of this system, a strategy for one of the
game modes is delivered by:

• The Capture and Hold specific implementation of the faction leader, providing target
selection, spawn point selection, a division of forces. (section 5.1)

• The methods in the multiplayer squad domain that define the squad state and
squad member state changes (section 5.2.2) and the daemon providing squad
leaders with information on Capture and Hold areas. (section 5.2.1)

7.3 Evaluation

Section 6.1 describes the setup and the results of a series of test rounds performed
with 8 bots on one side and a team of 8 human players on the other. Participants were
Guerrilla employees that play many multiplayer games and know the multiplayer bots
of other games. All 24 participants were asked to provide feedback on the basis of a
number of questions. The respondents’ feedback was used to evaluate the bots’
difficulty and entertainment value. Respondents replied that they found the bots’
difficulty to be “challenging”, “about right”, “tough but beatable”. Two participants

 54

thought the bots were “hard to beat”. (see section 6.1.3) On this matter, the bots
exceeded the requirement challenging for novice players as the testers were not
novice players. (They were all employees of Guerrilla.)

Unfortunately, most respondents replied that they did not think that the bots showed
human like behavior or intelligence. Their behavior was characterized as “robotic” and
“slightly repetitive/predictable”. Section 7.4 discusses probable causes and possible
solutions / improvements.

Nevertheless, the fact that the bots noticeably coordinated their actions was
appreciated. (“I loved how the bots tried to do stuff together! As a group!” – design/2)
Almost all respondents noticed the coordinated behavior of the bots, e.g. bots moving,
attacking and / or defending together. It seemed to increase their own tendency to
cooperate. During several test rounds, the members of the human team started
communicating – shouting orders across the office – in order to coordinate their
actions. Ten of the eighteen respondents explicitly mentioned that they enjoyed testing
the bots, calling them “[very/good] fun”.

The matter of extensibility of the multiplayer bot system has been discussed in
section 6.3. We have shown which parts of the multiplayer bot system are game mode
independent and may be reused and which parts need a new implementation in order
to construct AI for another game mode. (also see section 7.2).

The last evaluation criterion says that the bots should have an improved strategy
over Killzone's AI in terms of cooperation and compared to the Domination strategy.
Section 6.2 describes how Killzone’s Domination strategy was ported to the new
multiplayer bot system, how the two strategies were compared and what the results of
this comparison were. Before the comparison was made, Killzone’s Domination
strategy was made up to date with the changes in the Capture and Hold game mode.
This way we have shown that the grouped attack and defense of the new strategy
outmatches the Domination strategy.

7.4 Future work

7.4.1 System improvements

As mentioned before, an important improvement to the multiplayer bot system is the
support for other game modes. Besides the implementation of specialized faction and
squad leaders, some game modes may require some extra work to support multiplayer
specific individual actions, such as placing explosives, which will be needed for any
Assault type game modes. (see section 1.2.1)

One change that could lead to a better use of the HTN planner for squad control
would be to make a series of generic squad tasks (move, attack enemy, place
explosives, escort friendly, capture area etc...) and to define all squad behaviors in
terms of these tasks instead of using the state based squad member ordering
approach described in section 5.2.2. An advantage to this approach is that the plans
resulting from the domain would reflect the squad’s course of action at any time as it
does for individuals. A disadvantage is that squad member messages would need to
be processed in a separate way, as the squad leader would not be able to temporarily
suspend its current task in order to process these messages. The planner does not
allow switching between two active plans (multitasking).

 55

7.4.2 Better use of cover

During the evaluation by human test teams, some participants characterized the
behavior of the bots as robotic (as opposed to human like). One of the causes of this
characterization has been the bots’ limited use of cover and their limited reaction to
being hit. As described in section 5.2, squad leaders use the highest priority orders to
command the squad members, which causes squad members to consider the
execution of the order as more important than stopping to take cover or to fire at an
enemy. Ideally, when the bots are attacked while they are on the move, some of the
group members would seek cover and try to disable the enemy, while others continue
to move. A similar solution could work for attacking squads. Some rush in the Capture
and Hold area to neutralize it, while others are more careful and attack from behind
cover.

When defending a Capture and Hold area, bots would best seek cover from the
directions from which enemies are likely to appear, perhaps changing their position
from time to time. Some of the defendants could use a hiding location, keeping itself
out of sight of enemies until they try to attack.

7.4.3 Squad movement

Another reason for the robotic appearance of the bots is the fact that groups of bots do
not spread out while on the move. The way the squads move was said to be “ant like”,
as all squad members choose identical paths and end up walking directly behind each
other in a long line. To overcome this, the squad members’ movements should be
coordinated, creating more space between squad members, possibly in a squad
formation.

The regrouping of the bots caused the bots that already arrived at the designated
location to stand still (almost) completely. A well thrown grenade could wipe out almost
the entire squad. (Which is why grenades were taken out for the play tests.) Since any
novice FPS player will say that it is best not to stand still, the current regrouping not
only makes the bots less strategic, but also less human like. A solution may be found in
bots that gather while being on the move, or bots that move around while waiting for
others to join.

7.4.4 More variety in strategies

One way to make the bots more fun and / or challenging is the addition of a number of
different strategies for the same game mode (including a number of opening strategies)
plus a way to select or rotate them. As one of the participants of the test rounds
suggested: “Define a couple of strategies and mash them up so it's harder to know
what to expect.” Which kind of strategies may be applied partly depends on the number
of available bots. A simple way to add more variety to the Capture and Hold bots by
manipulating the number of desired captured areas was discussed in section 6.3.1.

7.4.5 Improved use of game feedback

Human players do not just rotate their strategy at random. (At least, not the better
players.). They take into account how well different strategies seem to be working. The
same holds for target and spawn location selection. Human players observe when a
certain approach does not work and change their course of action accordingly. The
target selection of the Capture and Hold strategy is adaptive to some extent, as
described in section 5.1.2. It directly influences the preference of a Capture and Hold

 56

area based on how often the squad that has targeted that area is attacked. An
unwanted side effect is that Capture and Hold areas are also lowered in preference
when they are attacked often, regardless of the outcome of the defense. Instead, areas
that are easily defended should be preferred, even when they are often attacked.

Additional information could be used to change strategy or tactics. For example, the
number of casualties versus the number of enemy casualties in some specific area /
location could indicate a danger level for an area. Position information on enemy units
(for as far as they are known) may give a clue on which area’s on the map are less well
defended. For example, when a bot squad is defeated by 5 human players nearby an
area on one side of the map, areas on the other side of the map are likely to be easier
to capture. These types of information could be used not only in target selection, but
also in path planning and spawn location selection (taking a safe / sneaky route).

7.4.6 Level dependent tactics / strategies

Since human players retain tactical knowledge about the multiplayer levels they play,
the bots may be equipped with knowledge about which strategies work best in which
level, and which of the targets should be considered more important than others
without this being considered cheating. For the Southern Hills level for example (see
overview in Figure 19) the middle base is of greater importance than the other two
bases. Besides the initial preferences for certain targets, level specific information
could include the location of entry points aka choke points for each objective. Choke
points define the defense perimeter of an objective. For example, the middle Capture
and Hold area of Southern Hills is located in a bunker that has three entries. If these
three points are secured, no enemy unit can approach the objective unnoticed.

 57

8 References

[1] Beek, JP van der (2007), MSc Thesis, Autonomous Squad Behavior in a Virtual
Game Environment, Vrije Universiteit Amsterdam, Faculty of Sciences.

[2] Bratko, I. (1990), “Matching”, Prolog Programming for Artificial Intelligence, 2nd
ed. (pp 38-43), Harlow: Addison-Wesley.

[3] Charniak, E., Riesbeck, C.K., McDermott, D.V., Meehan, J.R. (1987), “Lisp
Review”, Artificial Intelligence Programming, 2nd ed. (pp 1-33), Hillsdale, NJ:
Lawrence Erlbaum Associates.

[4] Erol, K., Hendler, J. and Nau, D.S. (1994). HTN Planning: Complexity and
Expressivity, Proceedings of the twelfth national conference on Artificial
intelligence (vol. 2) (pp. 1123-1128), Seattle, WA: American Association for
Artificial Intelligence.

[5] F.E.A.R., In Wikipedia, The Free Encyclopedia. Retrieved July 4th, 2007, from
http://en.wikipedia.org/wiki/F.E.A.R.

[6] Finite state machine, In Wikipedia, The Free Encyclopedia. Retrieved May 7,
2007, from http://en.wikipedia.org/wiki/Finite_state_machine

[7] First-person shooter, In Wikipedia, The Free Encyclopedia. Retrieved August
12, 2007, from http://en.wikipedia.org/wiki/First_person_shooter

[8] Gilgenbach M. (2006), Fun Game AI Design for Beginners. In S. Rabin (Ed.), AI
Game Programming Wisdom 3 (pp 55-63), Hingham: Charles River Media Inc.

[9] Guerrilla Company Profile, Retrieved July 8, 2007, from
http://guerrilla-games.com/company_profile.html

[10] Guerrilla Games, In Wikipedia, The Free Encyclopedia. Retrieved July 8, 2007,
from http://en.wikipedia.org/wiki/Guerrilla_Games

[11] Halo 2, In Wikipedia, The Free Encyclopedia. Retrieved July 5th, 2007, from
http://en.wikipedia.org/wiki/Halo_2

[12] Higgins D. (2002). Generic A* Pathfinding. In S. Rabin (Ed.), AI Game
Programming Wisdom, (section 3.2, pp. 114-121), Hingham: Charles River
Media Inc.

[13] Hoang, H. (2005), MSc Thesis, Using HTN to Coordinate Unreal Tournament
Bots, Lehigh University, USA

[14] Ilghami, O. (2006). Documentation for JSHOP2. Retrieved March 18, 2007, from
http://www.cs.umd.edu/~okhtay/jshop2doc.pdf

[15] Isla D., Blumberg B. (2002), Blackboard Architectures. In S. Rabin (Ed.), AI
Game Programming Wisdom, (section 7.1, pp. 333-344), Hingham: Charles
River Media Inc.

[16] Isla, D. & Blumberg B. (2002). Blackboard Architectures. In S. Rabin (Ed.), AI
Game Programming Wisdom (pp 333-344), Hingham: Charles River Media, Inc.

[17] Isla, D. (2005). Handling Complexity in the Halo 2 AI, Game Developers
Conference 2005 Proceedings

[18] JavaBot for Unreal Tournament, an open source project on Sourceforge.
Retrieved April 7, 2007, from http://utbot.sourceforge.net/

[19] Killzone manual (Vekta Today), as found in the PAL version of Killzone,
Developed by Guerrilla, Published by Sony Computer Entertainment Europe,
2004

[20] Laird, John E. (2000), It knows what you’re going to do: Adding anticipation to a
Quakebot, AAAI 2000 Spring Symposium on Artificial Intelligence and
Interactive Entertainment.

[21] Luger G.F., Stubblefield W.A. (1998), Artificial Intelligence, 3rd edition, chapter
13, Machine Learing: Symbol Based (pp. 603-660). Addison Wesley.

 58

[22] Luger G.F., Stubblefield W.A. (1998), Artificial Intelligence, 3rd edition, section
15.3.2, Evolutionary Programming (pp. 740-743). Addison Wesley.

[23] Luger G.F., Stubblefield W.A. (1998), Artificial Intelligence, 3rd edition, chapter
14, Machine Learning: Connectionist (pp. 661-712). Addison Wesley.

[24] Luger G.F., Stubblefield W.A. (1998), Artificial Intelligence, 3rd edition, section
4.2, Admissibility, Monotonicity, and Informedness (pp. 139-144). Addison
Wesley.

[25] Multiplayer game, In Wikipedia, The Free Encyclopedia. Retrieved April 7, 2007,
from http://en.wikipedia.org/wiki/Multiplayer_game

[26] Nau, D., Cao, Y., Lotem, A. and Muñoz-Avila, H. (1999). SHOP: Simple
Hierarchical Ordered Planner, Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI) (pp. 968-973), San Francisco, CA: Morgan
Kaufmann Publishers.

[27] No one lives forever, In Wikipedia, The Free Encyclopedia. Retrieved July 4th,
2007, from http://en.wikipedia.org/wiki/No_One_Lives_Forever

[28] Orkin J. (2004), Applying GOAP to Games, In S. Rabin (Ed.), AI Game
Programming Wisdom 2 (section 3.4, pp. 217-227), Hingham: Charles River
Media Inc.

[29] Orkin J. (2004), Simple Techniques for Coordinated Behavior. In S. Rabin (Ed.),
AI Game Programming Wisdom 2, (section 3.2, pp. 199-206), Hingham: Charles
River Media Inc.

[30] Orkin J. (2006), Three states and a Plan: The A.I. of F.E.A.R. Game Developers
Conference 2006 Proceedings.

[31] Quake II, In Wikipedia, The Free Encyclopedia. Retrieved July 7th, 2007, from
http://en.wikipedia.org/wiki/Quake_II

[32] Quake III Arena, In Wikipedia, The Free Encyclopedia. Retrieved July 7, 2007,
from http://en.wikipedia.org/wiki/Quake_III_Arena

[33] Reynolds J. (2004). Team Member AI in an FPS. In S. Rabin (Ed.), AI Game
Programming Wisdom 2 (section 3.3, pp. 207-215), Hingham: Charles River
Media Inc.

[34] RoboCup Official Site, retrieved May 7, 2007, from http://www.robocup.org/
[35] Simulation, In Wikipedia, The Free Encyclopedia. Retrieved August 12, 2007,

http://en.wikipedia.org/wiki/Simulation
[36] Soar (cognitive architecture), In Wikipedia, The Free Encyclopedia. Retrieved

April 2, 2007, from
http://en.wikipedia.org/wiki/Soar_%28cognitive_architecture%29

[37] Sterren, W. van der (2002). Squad Tactics: Planned Maneuvers, In S. Rabin
(Ed.), , AI Game Programming Wisdom, (section 5.4, pp. 247-259), Hingham:
Charles River Media Inc.

[38] Sterren, W. van der (2002). Squad Tactics: Team AI and Emergent Maneuvers.
In S. Rabin (Ed.), AI Game Programming Wisdom, (section 5.3, pp. 233-246),
Hingham: Charles River Media Inc.

[39] Straatman R., Beij. A., van der Sterren, W. (2006). Dynamic Tactical Position
Evaluation. In S. Rabin (Ed.), AI Game Programming Wisdom 3, (section 5.2,
pp. 389-403), Hingham: Charles River Media Inc.

[40] Straatman, R. & van der Sterren, W. & Beij, A (2005). Killzone’s AI: dynamic
procedural combat tactics, Proceedings of the Game Developers Conference
2005

[41] Unreal Tournament, In Wikipedia, The Free Encyclopedia. Retrieved July 7th,
2007, from http://en.wikipedia.org/wiki/Unreal_Tournament

 59

[42] Wallace N. (2004). Hierarchical Planning in Dynamic Worlds. In S. Rabin (Ed.),
AI Game Programming Wisdom 2, (section 3.5, pp. 229-236), Hingham: Charles
River Media Inc.

[43] Waveren, J.M.P. van (2001). MSc Thesis, The Quake III Arena Bot, University
of Technology Delft, The Netherlands

