

‣ Guerrilla is based in Amsterdam and we‟re part of Sony since

2005

‣ We‟re working on two titles

‣ Unannounced new IP

‣ Killzone: Shadow Fall

‣ The new Killzone is PS4 launch title

‣ Our aim for announcement event was to run on PS4 hardware

‣ 1080p, solid 30FPS, no cheats

‣ This talk is about the experiences we gained during the demo

period

‣ 60 AI characters

‣ 940 Entities, 300 Active

‣ 8200 Physics objects (1500 keyframed, 6700 static)

‣ 500 Particle systems

‣ 120 Sound voices

‣ 110 Ray casts

‣ 1000 Jobs per frame

‣ Three memory areas

‣ System - CPU

‣ Shared - CPU + GPU

‣ Video - GPU

1,536 MB System

128 MB Shared

3,072 MB Video

Sound 553 MB

Havok Scratch 350 MB

Game Heap 318 MB

Various Assets, Entities, etc. 143 MB

Animation 75 MB

Executable + Stack 74 MB

LUA Script 6 MB

Particle Buffer 6 MB

AI Data 6 MB

Physics Meshes 5 MB

Total 1,536 MB

Display list (2x) 64 MB

GPU Scratch 32 MB

Streaming Pool 18 MB

CPU Scratch 12 MB

Queries / Labels 2 MB

Total 128 MB

Non-Steaming Textures 1,321 MB

Render Targets 800 MB

Streaming Pool (1.6 GB of streaming data) 572 MB

Meshes 315 MB

CUE Heap (49x) 32 MB

ES-GS Buffer 16 MB

GS-VS Buffer 16 MB

Total 3,072 MB

‣ No low-level CPU optimizations

‣ Just SIMD based math library (using SCE intrinsics)

‣ Focused optimizations on going „wide‟

‣ Almost all code is multi-threaded / jobified

‣ Same model as PS3

‣ One main „orchestrator‟ thread

‣ All other code runs in jobs across all cores

‣ Easier to program, so much more code in jobs

‣ Jobification of code, ballpark improvements:

‣ (PS3 ‣ PS4 - % of code running in jobs)

‣ 80% ‣ 90% - Rendering code

‣ 10% ‣ 80% - Game Logic

‣ 20% ‣ 80% - AI Code

‣ Demo was optimized quite well

‣ 1080p30 with very few dropped frames on CPU and GPU

‣ Profiling tools are still in development this early on

‣ …so we developed our own CPU and GPU Profiler

‣ The biggest performance challenge was thread contention

‣ Shared memory allocator, ton of mutexes.

‣ We gained approximately 50% of the CPU back by fixing high level

code.

‣ Do this first before you try to switch to some low level

multithreading friendly malloc.

‣ We had a few fights with the PS4 thread scheduler

‣ A lot of our SPU code used spinlocks

‣ Spinlocking is not nice for on any multicore system

‣ Just play nice, system mutexes are very fast

‣ We still use deferred shading

‣ The entire pipeline is HDR and linear space

‣ We switched to physically correct lighting model

‣ Energy preserving

‣ Properly calculated geometry attenuation factors

‣ All materials support translucency and Fresnel effect

‣ All our lights are area lights

‣ Volumetrics supported on every light

‣ Real-time reflections and localized reflection cubemaps

‣ Proper roughness response matching the real-time lights

‣ G-buffer with 5 MRTs + 32bit depth

‣ 1080p, RGBA16f, no MSAA at the moment

‣ 2x 8bit backbuffers

‣ 4x 2048x2048x32bit shadow maps

‣ We don‟t use HiZ to avoid decompression before reads.

‣ A lot of low resolution buffers for post process effects

‣ Most of the buffers are overlapping in memory

‣ We still need to optimize the layout and formats

‣ Out of order generation using jobs

‣ Geometry passes are split into multiple jobs too

‣ We kick up to 60 command buffers per frame

‣ CBs are sorted based on a how they need to be consumed

‣ All double buffered

‣ We issue WaitForFlip at the very last moment in the frame

‣ Right before the next flip when the GPU renders into the back buffer

‣ Allows to avoid blocking waits on CPU during long frames

‣ CPU

‣ Core 0

‣ Core 1

‣ Core 2

‣ GPU

Geo 100 Geo 101

Geo 200

Geo 300

Lights 500

Lights 600

Post 700

Post 701

Geo 100 Geo 200 Geo 300 Lights 500 Lights 600 Geo 101

Post 700 Post 701 WaitForFlip #N-1 Flip #N Blit

‣ Around 40k polygons for the highest LOD

‣ Enough to capture all detail for closeups

‣ We provided detail guide for LOD setups

‣ Up to 8 bone influences per vertex

‣ Most vertices use 4-5, drops with LOD#

‣ 6 x 2k x 2k textures for character body

‣ Plus detail maps and head textures

‣ 10ppi, everything authored as 4k

‣ KZ3 used 10k polygons, 3 LODs and 1k

textures

LOD# Polycount Distance

1 40,000 0-2

2 20,000 2-5

3 10,000 5-10

4 3,200 10-15

5 800 15-20

6 350 20-30

7 150 30+

Killzone: Shadow Fall Killzone 3

Killzone: Shadow Fall Killzone 3

Killzone: Shadow Fall Killzone 3

Killzone: Shadow Fall Killzone 3

 Optimization Saving

Sorting by (vertex) shader still helps

 ms

More aggressive threshold for minimum bone influence (1%)  ms

Normal/Tangent/Binormal compression with x10y10z10w2  ms

Only store Normal + Tangent + sign bit for Binormal

 ms

We removed the tangent space for distant static LODs

Required adjustments to the directional lightmap sampling

 ms

 Optimization Saving

Sorting by (vertex) shader still helps

 ms

More aggressive threshold for minimum bone influence (1%)  ms

Normal/Tangent/Binormal compression with x10y10z10w2  ms

Only store Normal + Tangent + sign bit for Binormal

 ms

We removed the tangent space for distant static LODs

Required adjustments to the directional lightmap sampling

 ms

‣ Probably the most extensive and customizable system we have

‣ Can render in full resolution or half resolution or in deferred mode

‣ Can read from- and write to the g-buffer

‣ Can spawn another particles, meshes, lights and sounds on impact

‣ All particles use artist created shaders just like any other object

‣ Engine supports deferred lighting and shadowing of all particles

‣ Each particle can sample from forcefields (our artist placed

forces)

‣ All this means artists don‟t need millions of particles to achieve

the desired effect.

‣ All particles are generated on the CPU - 10ms

‣ Manager job determines what is visible and needs to update

‣ One particle logic update job and one vertex job per subsystem

‣ Extensive code optimizations for PS4

‣ Update „static‟ particles early after the camera is available

‣ Use simple double buffered linear allocator to avoid contention

‣ Only generate vertices for visible particles

‣ Plans to move to compute in the future

‣ Real-time reflections

‣ Depth based and color cube color correction

‣ Exposure control

‣ Ambient occlusion

‣ Bloom and screen space godray effects

‣ Bokeh depth of field and motion blur

‣ Extensive artist driven lens flares

‣ FXAA

‣ Post processing is usually bandwidth bound

‣ Performance scales linearly with texture format size

‣ We switched from RGBA16F to smaller minifloat or integer formats

‣ Bloom downsample chain is 2x faster with R11G11B10

‣ SSAO randomly sampled depth in FP32

‣ Heavy cache trashing, FP16 gave us 2x speed improvement

‣ FXAA used RGBA16F as color input + luminance

‣ 2x speedup by switch to R11G11B10 for RGB and FP16 for luminance

‣ We found out that it‟s beneficial to perform reads from the same

texture in packs of 4

‣ We‟re now partially unrolling our dynamic loops.

‣ Almost doubled performance of our reflection raytrace

‣ MRT blending performance seems to scale linearly with the

number of targets.

‣ Blending in shader can be faster - better scheduling of reads.

‣ Saved 50% on our full screen dust shader.

‣ Branching can be faster than a texture fetch hit

‣ We merged a lot of individual passes

‣ Saves read / write performance

‣ DoF Near & Far CoC is calculated once and output to MRT

‣ We have a “mega” post process composite pass

‣ Merges results of all effects with the full resolution scene image.

‣ Avoids alpha blending and re-reads from memory.

‣ Quarter resolution

‣ Full resolution compute and point-sprite based version is not ported to

PS4 yet.

‣ 13x13 (169 samples) gather kernel

‣ Uses texture to define the bokeh shape

‣ Runs twice - once for far DoF, once for near DoF

‣ Was one of our most expensive effects before the optimizations

‣ We wanted to utilize branching to reduce the sample count for

smaller CoC values

‣ The idea - split the loop and gather in „rings‟

‣ But this is a gather filter

‣ We need to know the CoC of all neighbors affecting the current pixel to

find the starting „ring‟.

‣ Solution - create the max tree of CoC values

‣ 4 mips are enough for our 13x13 pixel filter, takes 0.05ms

‣ Also forces filtering to be coherent on tile granularity

‣ Construction cost is almost inmeasurable

‣ Average DoF cost went down to 1/8th of the original cost

‣ Peak cost in demo – 1/4th of the original cost

‣ A mixture of screen space raytrace and a set of localized

cubemaps.

‣ A lot of Guerrilla secret sauce™ in this one...

‣ Temporal reprojection for secondary bounces

‣ Hierarchical buffers to accelerate the raytrace

‣ Color buffer convolution matching our roughness

Cubemaps ON Raytrace OFF

Cubemaps ON Raytrace ON

Cubemaps ON Raytrace OFF

Cubemaps ON Raytrace ON

‣ Fallback in case the screen-space reflection cannot give result

‣ Reflected point is behind geometry or outside the screen

‣ Single global cubemap produces wrong reflections

‣ Classical example is seeing skybox reflection while you are standing

indoor against a wall.

‣ The idea is to have many small, local, cubemaps

‣ To capture the reflections inside a single room

‣ Or on the a landing platform in Killzone demo

‣ We currently pick only 8 localized cubemaps per frame

‣ Reflection shader finds cubemaps affecting current pixel

‣ Simple loop through all cubemaps

‣ Check if point is inside the cubemap AABB

‣ Fallback to global cubemap if there‟s no hit

‣ Relies on dynamic branching to avoid cubemap sampling

‣ When point check fails

‣ When total accumulated reflection amount reaches one

Cubemaps ON Raytrace OFF

Cubemaps ON Raytrace ON

‣ Very important part of the Killzone look

‣ Each of our light types support volumetrics

‣ Implemented as straightforward raymarching

‣ Rendered in quarter resolution during lighting pass

‣ We wanted something fancier and faster, but were pleasantly surprised

with the PS4 performance

‣ We use a couple of tricks to improve the quality

‣ Per pixel depth dithering of raymarch

‣ Bilateral filter and upsample

‣ 16 layers deep screen space participating media buffer

‣ Contains vesired intensity of volumetric effect at given camera distance

‣ We use particles to fill this buffer

‣ 16 layers deep screen space volume light buffer

‣ Amount of rendered volumetric lighting at given camera distance

‣ Allows blending of volumetrics and transparencies

‣ PS4 is really easy to program for!

‣ Wide multithreading is a must, consider using jobs

‣ Be nice to the OS thread scheduler and avoid spinlocks

‣ GPU is really fast!

‣ Watch your vertex shader outputs

‣ Don‟t be afraid of using conditionals

‣ GDDR5 bandwidth is awesome!

‣ If you map your memory properly

‣ Use the smallest pixelformat for the job

‣ Use compute (and tell us about your experiences)

