
Killzone Shadow Fall

Creating art tools for a new generation of games

Sander van der Steen
Senior Technical Artist

Guerrilla Games

Intro

•Guerrilla Games is based in Amsterdam
•First party Sony studio since 2005

•Killzone Shadow Fall

•Launch title for the Playstation 4

•Pipeline build around Maya

Takeaway

•Maya in the Guerrilla Games pipeline

•Integrating a game-engine in Maya

•Maya scene file considerations for next-gen

•New possibilities of viewport 2.0

Maya in the Guerrilla Games pipeline

Simple Killzone Shadow Fall pipeline overview

Asset creation

Maya, Mudbox, Motion builder etc.

• All assets are imported into Maya and placed in environment
• Individual assets are tweaked

Simple Killzone Shadow Fall pipeline overview

Asset creation
Environment

Art

• The levels with geometry transfer to the lighting team
• “Complete” levels will be exported to game

Simple Killzone Shadow fall pipeline overview

Asset creation
Environment

Art
Lighting Game

Simple Killzone Shadow Fall pipeline overview

Asset creation
Environment

Art
Lighting Game

• Many iterations required to reach production quality

•Artist friendly + familiar

•A lot of editing for free

•Mesh edits (polygon tools)

•Material edits (hypershade)

•Less need to import/export to/from applications

Autodesk Maya advantages

Autodesk Maya in-engine viewport demo:

Autodesk maya in-engine viewport demo:

Autodesk Maya in-engine viewport demo:

Integrating a game-engine in Maya

Maya needs to know how:

•To render

•Game engine specific

•To communicate attribute changes
•Mesh edits, position updates etc.

•To read game data
•Maya scene usage

A lot of tools coding!

A game-engine in Maya: Deferred rendering

Initial implementation:

•Brute force updates each frame (CPU limited)

•Knowing what to update can be difficult

•Limited integration

•View selected, draw overrides, etc.

Deferred rendering: Killzone 3

Playstation 3 vs. Playstation 4

VS

RAM

Processing Power PS3

PS4
~10x

16x

Workstation performance: “Killzone 3” vs “Killzone Shadow Fall”

VS

RAM

Single threaded processing power 2009

2013
~2x

~4x

Deferred rendering: Killzone 3

Maya Updates

Maya Render

Deferred Render

Single frame CPU time distribution

• Maya mesh edits?

• Tricky hierarchical updates (from a parent transform)

• Visibility changes
• Maya LOD groups

• Shader changes?

Challenges for pushing updates

Maya’s DAG tree might not be represented 1 on 1 in-game.

• Callbacks? (MMessage)

• Often no notion of groups or hierarchy

• Only world-space transforms in-game

Challenges for pushing updates 2

•A lightweight representation of the DAG tree in Maya

•It mirrors the DAG tree in Maya

•Implemented using C++ callbacks (API MMessage class)

Solution: Guerrilla DAG

Engine Guerrilla DAG Maya

• Node added callback (MDGMessage):
• Create GG DAGnode

• Transforms, lights, maya meshes, building blocks and sets (shaders)

• Add GG DAGnode to database

• Node removed callback (MDGMessage):
• Cleanup

Implementing Guerrilla DAG

will have read only access to it’s sibling via an
MObjectHandle to the maya node

Implementing Guerrilla DAG

GG DAG node

Maya node

Engine

Each Guerrilla DAG node:

will have read only access to it’s “sibling” via an
MObjectHandle to the maya node

Implementing Guerrilla DAG

GG DAG node

Maya node

Engine

Each Guerrilla DAG node:

will listen for AttributeChanged callback on it’s sibling
(MNodeMessage)

will have read only access to it’s “sibling” via an
MObjectHandle to the maya node

Implementing Guerrilla DAG

GG DAG node

Maya node

Engine

Each Guerrilla DAG node:

will listen for AttributeChanged callback on it’s sibling
(MNodeMessage)

deals with AttributeChanged as appropriate for the
nodetype

Implementing Guerrilla DAG

GG DAG node

Maya node

Engine

Each Guerrilla DAG node:

Knows how to update the game engine

Transforms are special cases:

• Monitor child
added/removed
(MDagMessage)

• Keep an up-to-date list of
children

• Can push updates to
children

Implementing Guerrilla DAG

GG DAG node

Maya node

Child GG DAG node A

Child Maya node A

Child Maya node B

Child GG DAG node B

Implementing Guerrilla DAG

GG DAG node

Maya node

Child GG DAG node A

Child Maya node A

Child Maya node B

Child GG DAG node B

Child nodes can also
access siblings!

Practical example: Moving a group

Group1

pCube1

pCubeShape1

pCube2

pCubeShape2

Produces an identical Guerrilla
DAG hierarchy

Practical example: Moving a group

Group1

pCube1

pCubeShape1

pCube2

pCubeShape2

Attribute changed on group1
triggered

Practical example: Moving a group

Group1

pCube1

pCubeShape1

pCube2

pCubeShape2

Update cached matrix and
propagate

Practical example: Moving a group

Group1

pCube1

pCubeShape1

pCube2

pCubeShape2

Finally update the game

Results, single frame

Maya Updates

Maya Render

Deferred Render

Single frame CPU time distribution

Results, single frame

Maya Updates

Maya Render

Deferred Render

Single frame CPU time
distribution

•Performance increase 40x

•Most CPU time spend rendering

•Much better integration with Maya

 Hidden object groups
 view selected
 Maya LOD groups

Scene file considerations

Killzone 3 (Playstation 3)

•Released in February 2011

•Average team size ~120

•5TB of working data

•Released in November 2013

•Average team size ~160

•12TB of working data

•Larger Maya files
•Longer load/export time

Killzone Shadow Fall (Playstation 4)

Reducing file-load times

In general: Small files load faster

Identify bottlenecks in file-load

Killzone 3 / early Killzone Shadow Fall: 80% of Maya file

• Mesh data

• Attribute data

Identify bottlenecks in file-load

Custom attributes on native
Maya nodes

Export-time state:
• Collapsing
• Physics
• Destructability
• Etc.

Attribute data

Attribute-data overhead in scene size

Each custom attribute on a Maya node requires:

Attribute-data overhead in scene size

Each custom attribute on a Maya node requires:

• An addAttr statement in the Maya file per instance

Attribute-data overhead in scene size

Each custom attribute on a Maya node requires:

• An addAttr statement in the Maya file per instance

• A setAttr statement in the Maya file per

instance(optional)

Attribute-data overhead in scene size

Each custom attribute on a Maya node requires:

• An addAttr statement in the Maya file per instance

• A setAttr statement in the Maya file per
instance(optional)

• A nodeAdded callback to install the attributes on a
newly instanced maya node

Attribute-data overhead in scene size

In Killzone Shadow Fall:

• ~20 custom attributes on a node

• ~40.000 nodes in an average maya scene containing

a level section

• ~50.000 Maya files stored

Solution: Extension attributes

Introduced in Maya 2012
• Allows static definition of a custom attribute

• Add to type of class once (e.g. transform)

• Attribute definition not stored in scene
• Defined in plugin

Benefits:
• No more addAttr calls required per instance

• No callback required on nodeAdded

Extension attributes results:
•Static scene (20.000 cubes)

Dynamic

attributes

Extension

attributes

Difference

Scene size 85MB 15MB - 80%

File load time 45 sec. 14 sec. - 66%

Result: Switching to Extension attributes

•Mesh data is large by nature
•Reduce amount of maya meshes required

•Look at the use of maya meshes

Mesh-data overhead in scene size

Mesh usage in Killzone 3

Building blocks
• Developed during Killzone 2

• Referencing of game-data

•Small section of re-usable static geometry

• Custom shape (MpxSurfaceShape)

Building blocks

Custom shape generates a Maya mesh

Custom shape

Maya mesh shape

2 Shapes for a transform

Building blocks

Why Maya meshes of game-data?

• Wireframe and smooth shaded views

• Snapping

• Software rendering for lightmaps

• Performance in viewport 1.0

•No snapping for artists (fixed in Maya 2013)

Problems and solutions with custom shapes (MPxSurfaceShape)

•No snapping for artists (fixed in Maya 2013)

•Custom shapes need to feel as Maya meshes for artists.

•Draw overrides, display layers, colors

Problems and solutions with custom shapes (MPxSurfaceShape)

•No snapping for artists (fixed in Maya 2013)

•Custom shapes need to feel as Maya meshes for artists.

•Draw overrides, display layers, colors

•Create maya meshes on demand for lightmaps
•Do not save these to file (delete after use)

Problems and solutions with custom shapes (MPxSurfaceShape)

•No snapping for artists (fixed in Maya 2013)

•Custom shapes need to feel as Maya meshes for artists.

•Draw overrides, display layers, colors

•Create maya meshes on demand for lightmaps
•Do not save these to file (delete after use)

•Drawing slow due to OpenGL state switching

•Use MpxModelView, or viewport 2.0

Problems and solutions with custom shapes (MPxSurfaceShape)

Viewport 2.0

What is viewport 2.0?

A new viewport for Autodesk Maya
• Designed for current generation hardware

• Less state switching, much less CPU overhead

• A new API for plugin drawing
• No more MPxLocatorNode::draw, MPxSurfaceShapeUI, etc

New possibilities of viewport 2.0

The new viewport 2.0 API offers:
• More performance

• Maya meshes at least x10

• More controlled integration with Maya
• Depth buffer sharing

• New features

• Mix and match MRenderOperations

Deferred renderer based on “Viewport 1”
• (MViewportRenderer class)
• Little control/integration with Maya

Artists lacked:

• Selection highlighting
• Depth between Maya and game geometry incorrect (locators/lights)
• No display of Maya meshes

Viewport 2.0: Integration

Comparing deferred and deferred_vp2

Comparing deferred and deferred_vp2

Proper depth support, no more clutter!

Comparing deferred and deferred_vp2

Proper depth support, no more clutter!

Comparing deferred and deferred_vp2

How does it work?
MRenderOverride
 Custom Viewport 2.0 renderer

• MRenderOperation
 A pass in MRenderOverride

• MSceneRender
 Maya’s viewport 2 rendering pass

• MUserRenderOperation
 Do your own!

Viewport 2.0: High level API overview

Render deferred beauty and depth (MUserRenderOperation)

Deferred Viewport 2.0: Rendering operations

Copy to Maya’s buffers (MQuadRender)

Deferred Viewport 2.0: Rendering operations

Render Maya’s view on top, preserving depth (MSceneRender)

Deferred Viewport 2.0: Rendering operations

Deferred Viewport 2.0: Rendering stages

•Allows artists to work directly with in-game rendering
•Selection highlighting, depth

•Full support for Maya native geometry/manipulators etc.
•Full control over what maya draws

•Rendering API Agnostic (DirectX or OpenGL)

Viewport 2.0: Integration advantages

Debug modes as extra operations

Export settings:
• Visualize draw call count

• Single color for each draw call

Viewport 2.0: More then rendering

Visualize LOD states

The Future

• Bringing Maya and game closer together
• Background scene loading (streaming)

• Storing scene elements in game-format only

• Multithreading

• Direct X rendering

Conclusions

• Integrating game-engine in Maya improves productivity

• Carefully thinking on scene configuration saves loads!

• Viewport 2.0 provides flexibility and new possibilities

Questions?

Thank you

Visit us at guerrilla-games.com

